
NON-IMMERSION THEOREMS FOR REAL PROJECTIVE SPACES 

BY JOSE ADEM AND SAMUEL GITLER 

Introduction 

Let f be the Hopf bundle over the n-dimensional real projective space RPn. 
As is known ( [12]), RP" immerses in the euclidean space Rn+k if and only if the 
bundle (n + k + l)f has n + 1 independent non-zero sections. 

The main result of this paper states that the bundle (2n - 4)f does not have 
n + 1 independent non-zero sections if n = 2r + 2s + 1 with r > s ~ 2 and 
n > 16. Therefore, for these values of n, we prove that RPn does not have an 
immersion in R2n-5• With the exception of n = 15, this includes our previous result 
in [4; Th. 12.3], since it trivially implies that RPn+2 does not have an immersion 
in R2<n+2l- 9_ Now, Sanderson has shown in [13] that RP"+ 2 can be immersed in 
R 2n-4• Consequently, for n as before, we obtain that the three consecutive spaces 
RPn, RPn+l and RPn+2 have the best possible immersion in the same euclidean 
space R2n-4_ 

The non-existence of n + 1 sections in the vector bundle (2n - 4n is estab
lished by computing some secondary cohomology operations in the Thom space 
of the bundle and using the fact that these operations vanish on low dimen
sional classes. The proof varies slightly according with the following three cases: 
n = 2r + 2• + 1 with r > s + 1 ~ 4, n = 2'" + 5, and n = 2r + 2r-l + 1. For 
the first case the argument can be illustrated as follows. The Thom space· of 
(2n - 4)f is the stunted projective space RP 3n-4/RP 2"-5. The existence of n + 1 
sections in (2n - 4)~ implies that RP 3n-4/RP 2n-5 is the (n + 1)-fold suspension 
of a space whose mod 2 cohomology has trivial ring structure. With the use of 
stable secondary cohomology operations this is proved to be impossible. 

The above results are extended to include the case n = 2r + 2 with n > 6 
which, with another method, was recently obtained by Baum and Browder in 
[6]. This paper also contains a simple proof of the non-immersion theorem of 
James ([10]) for n = 2r - 1. 

Unless otherwise stated, throughout this work we will use singular cohomology 
with coefficients Z2, the cyclic group of order 2, and in general we will omit the 
coefficient group; thus Hq(X) will stand for Hq(X; Z2). 

Finally, we wish to thank E. H. Spanier and S. Y. Husseini for several sugges
tions that improved the presentation of this paper. 

1. The twisted normal bundle 

Let RPn be the real projective n-space and ~' the canonical line bundle over 
RPn. An immersion of RPn in Rn+\ the (n + k)-dimensional euclidean space, 
determines two k-plane bundles, the normal bundle v and the twisted normal 
bundle v ® f. As is well known, the stable class of v is independent of k, but this 
is not the case for v ® f. The twisted normal bundle has been used by Epstein 
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and Schwarzenberger in [7] to construct embeddings of some real projective 
spaces and by Sanderson in [12] to give criteria for immersion. 

Let rp( n) be the number of integers r with 1 ~ r ~ n and r == 0, 1, 2, 4 mod 8. 
For n > 8, the stable normal bundle of RPn is (2\?(n) - (n + 1) )t, and for an 
immersion of RPn in Rn+\ the stable twisted normal bundle is (n + k + l)t. 

THEOREM 1.1. The following statements are equivalent: 
(1.2) RPn can be immersed in Rn+k_ 
( 1.3) The bundle ( 2\?(n) - ( n + 1)) t has 2\?(n) - ( n + k + 1) independent 

non-zero sections. 
( 1.4) The bundle ( n + k + 1) t has n + 1 independent non-zero sections. 

Proof. The equivalence of ( 1.2) and ( 1.3) is Theorem ( 4.2) of [13]. The equiva
lence of (1.2) and (1.4) is Theorem (2.3) of [12]. For completeness we give a 
proof of this last equivalence. Let T be the tangent bundle to RPn. By the theorem 
of Hirsch ( [8; Th. 6.1]), RPn immerses in Rn+k if and only if there exists a k-vector 
bundle v such that v + T = n + k. This in turn is equivalent with v + T + 1 = 

n + k + 1 by [11; Lemma 3.5]. Since T + 1 = (n + l)t, we have v + (n + l)t = 

n + k + 1. Now, using the fact that t ® t = 1 it follows that 

(1.5) v ® t + (n + 1) = (n + k + l)t 
if and only if RPn immerses in Rn+k_ 

We now establish a corollary to (1.1) that will be used to obtain our non
irrnnersion results. If a is a vector bundle over RPn, let (RPn)°' denote the Thom 
space of a. The following is shown by Atiyah in [5; ( 2.4), ( 4.3)]: If tis the trivial 
t-bundle then (RPn)a+t "' S\RPn)°' where St is the t-fold suspension. Also, 
(RPnf" ,..._, RPn+r/RP'"- 1 where the latter space denotes the stunted projective 
space. 

COROLLARY 1.6. If vis the normal bundle of an immersion of RPn in Rn+\ then 

(1.7) st(Rr)' ,.__,. RP2N-1/RP2N-n-2, 

where t = 2\?Cn) - n - k - 1, N = rp(n), and 

(1.8) 

An immediate consequence of ( 1.5) is the following: 

COROLLARY 1.9. If x E H 1(RPn) is the generator, then the total Stiefel-Whitney 
class of v ® tis: 

W(v ® 0 = (1 + xf+HI. 

If 2r ~ n < 2r+i then the Stiefel-Whitney classes imply that RPn cannot be 
immersed in R 2r+1-z_ If v is the normal bundle of an immersion of RPn in Rn+k 
with k < n, then n + k > 2r+i - 2, and we have 

PROPOSITION 1.10. Wk(v ® 0 ~ 0 if and only if n + 1 = 2r+i_ 



NON-IMMERSION THEOREMS 39 

) ( n + k + 1) k • Proof. From (1.9 we have Wk(11 ® 0 = k x ; and with the above 

hypothesis it follows easily that ( n + ! + 1) == 1 mod 2 if and only if n + 1 = 

2r+l. 

2. The Gysin sequence 

Let a = (E, X, 1r) beak-vector bundle over X, with Ethe total space and 
1r:E---+ X the projection. Let Eo denote the subspace of E consisting of the non
zero vectors. We have the following commutative diagram, 

(2.1) 

where the upper sequence is the cohomology sequence of the pair (E, Eo), Tis 
the Thom isomorphism, 1r * is the isomorphism induced by the projection 1r, and 
Wk is the top Stiefel-Whitney class of a. 

PROPOSITION 2.2. Let xa be the Thom space of a. If wk = 0, th(', modulo two 
cohomology ring H*(Xa) is a trivial ring. 

Proof. We have a natural isomorphism H*(Xa) ~ H*(E, Eo) in positive 
dimensions, so it is sufficient to prove that the ring H*(E, Eo) is trivial. Let 
U E H\E, Eo) be the Thom class of a. Wk = 0 implies that U \_) U = Sqk U = 0. 
Now if u and v are two elements of H*(E, Eo), by the Thom isomorphism there 
exist elements x and yin H*(X) such that u = U \_) 1r*x and v = U \_) 1r*y. 
Consequently, u \_) v = U \_) U '-' 1r * ( x \_) y) = 0, and this ends the proof. 

If Wk = 0, then j* = 0 in (2.1) so that for all q > 0 we have the short exact 
sequences 

i* 8 
(2.3) 0---+ Hq- 1 (E) -----t Hq- 1(Eo) -----t Hq(E, Eo) ---+ 0. 

Suppose now that X = RPn. In this case, if wk = 0 and W1 = 0, then the 
Euler class x(o:) = 0 for n even or for n odd, and k ~ n. Therefore, with these 
hypotheses, (2.3) also holds over the integers. 

Again, with X = RPn, suppose that Wk ~ 0. Then '--1Wk:Hq-\RPn) ---+ 
Hq ( RPn) is an isomorphism for all k ;;; q ;;; n. Therefore, fron, ( 2.1), it follows 
that in this rangej*:Hq(E, Eo) ~ Hq(E). Consequently, if h:Rr---+ (Rr)a is 
the inclusion of the base in the Thom space, induced by the zero-section, we have 



40 JOSE ADEM AND SAMUEL GITLER 

3. The theorem of J runes 

James in [10] has obtained strong non-immersion results for RPn when n + I 
is a power of two. He uses axial maps and the reducibility of stunted projective 
spaces. We will obtain these results without using axial maps. 

Suppose that RPn immerses in Rn+k with normal bundle v and twisted normal 
bundle v ® ~- Since (RPny®< is (k - !)-connected, the inclusion h:RPn -+ 

(RPny®< factors, up to homotopy, as shown in the following diagram, 

(3.1) 

Rr~ (Rrf®< 

"' /' g",. /j 

Rr/RPk-l 

where g is the collapsing map. Then (2.4) and (3.1) give 

(3.2) f*:Hq( (Rry®<) ~ Hq(Rr/RPk-l), for O ~ q ~ n. 

Now, we recall from [10] that two spaces X and Y are mod 2 S-related if there 
exist integers r, s and a map Sr X -+ S"Y which induces an isomorphism in the 
homology mod 2. 

PROPOSITION 3.3. Let n + I be a power of two. If RPn immerses in Rn+k then 
RPn/RPk-l and RP 2n+1/RPn+k are mod 2 S-related. 

Proof. With the (n + 1)-fold suspension of the map f of (3.1) and the homeo
morphism ( 1.8) we obtain a map 

F:Sn+l(RPn/RPk-l) -+ RP 2n+k+1/Rr+k. 

Since the first space in (2n + !)-dimensional, this map factors, up to homotopy, 
as shown below, 

F 
sn+l(RPn/RPk-1) - RP2n+k+l;Rr+k 

ii"-. /( 
"" / 
RP2nH/RPn+k 

where i is the inclusion map. Consider the corresponding mod 2 cohomology 
diagram. From (3.2), F* is an isomorphism for O ~ q ~ 2n + 1. Also, i* is an 
isomorphism in this range. Then G* is an isomorphism for all q. Since the spaces 
are finite and the group of coefficients is the field Z2, then G*, the induced 
homomorphism in homology mod 2, is an isomorphism, and (3.3) follows. 

THEOREM 3.4. (James). rf n = 2r - 1, then RPn cannot be immersed in R 2n-\ 
where 

q = 2r if r == I, 2 mod 4 

q = 2r + 1 if r == 0 mod 4 

q = 2r + 2 if r == 3 mod 4. 
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Proof. Suppose that RPn can be immersed in R 2n-q. Then by ( 3.3), Rr / 
RPn-q-l and RP 2n+1/RP 2n-q are mod 2 S-related. Therefore, these two spaces are 
-either both S-reducible or both not S-reducible by [10; (2.1) and footnote 4]. 
Now the results of Adams in [2] say that RP'+ 1/RF8- 1 is S-reducible if and only 
ifs + t + 1 = 0 mod 2"'<tl. For the values of q in (3.4) one easily checks that 
RP 2n+1/RP 2n-q is S-reducible and that Rr /RPn-q-l is not S-reducible. This 
~ontradiction establishes the theorem. 

4. Sphere bundles over real projective spaces 

We will establish here some results about the action of the Steenrod squares 
Sq; in the cohomology of sphere bundles over RPn. These auxiliary results could 
be stated in a more general form, however, for simplicity, we restrict them to 
cover the needs of this paper. 

THEOREM 4.1. Let 'T/ = (E, RPn, 11') be an orientable 4t-vector bundle, and set 
b = n - 4t + 1. Suppose that W2 ~ 0, W4t = 0, b ~ 5 and b not a power of two. 
If U E H 4\E, Eo) is the Thom class of r,, then there exists a unique class 
u E H 41- 1(Eo) such that OU = u with Sq2i+l u = 0 and Sq2i u = u 'J i* 1/'*w2i 

for all i. 

Proof. Since 7/ is orientable, W1 = 0 and, by the hypotheses, W41 = 0 and 
4t < n. Therefore, from (2.3), the cohomology sequence of (E, Eo) breaks into 
short exact sequences over Z2 and also over the integers z. If g* = ( 71'i) *, these 
sequences become , 

g* ii 
0 - Hq-l(Rr) ----'---* Hq-l(Eo) -* Hq(E, Eo) - o. 

If q = 4t, then H 41- 1(RPn, Z) = 0 and there exists u1 E H 41- 1(Eo ; Z) such that 
-0u 1 = U 1 , where U1 E H 4\E, Eo ; Z) is the integral Thom class of 71. Then u and 
U are the reductions modulo 2 of u1 and U1, respectively, and we have ou = U 
and Sq1 u = 0. These last two conditions guarantee the uniqueness of u. 

From the Wu formulae we have W2;+1 = Sq1 W2; + W1 W2; = 0. The action 
of the squares in the Thom class gives 

(4.2) o(Sqku +u .___,g*Wk) = 0. 

This establishes the theorem for all k > b, since in this range the coboundary o 
is an isomorphism. 

We now consider the cases k ~ b. From (4.2) it follows, in general, that 

( 4.3) 

where x E H 1(RPn) is the generator and ak is either 0 or 1. To complete the 
proof, it is enough to show that ak = 0 for all 0 ~ k ~ b. To begin with, a0 = 
a1 = 0. Suppose a2 = 1; then by applying Sq2 to ( 4.3) with k = 2 we obtain 
u .___, g*W/ + (Sq 2 u) .___, g*W2 = 0. Substitution of Sq2 u for the expression 
given by the right side of (4.3) in this last equality gives g*(x4t+3 ) = O; but 
this is a contradiction, since n ~ 4t + 4. Therefore a2 = 0. From Sq3 u = 
Sq1 ( u .___, g*W2) = 0 it follows that a3 = 0. 
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We proceed now by a four step induction. Suppose that ai = 0 for 
j = 0, 1, · · · , 4i - 1. Since the relation Sq4i+i = Sq2 Sq4H + Sq4i Sq1 when 
applied to u gives Sq4i+ 1 u = 0, it follows that a4;+1 = 0. If 4i < b and a4; = 1, 
then by applying Sq1 to (4.3), with k = 4i, we get 0 = Sq4i+ 1 u = g*(x4t+ 4i), 
which is a contradiction since 4t + 4i ~ n. Therefore, in this case a4; = 0. Now, 
if 4i = b, then 4i is not a power of two and Sq4i is reducible, so there exists a 
relation of the form Sq4i ~ L Sq' Sq• with O < r < 4i. Using the induction 
hypothesis first, and then using it again together with the Cartan formula, we 
obtain 

Sq4i U = L Sqr (u '--' g*Ws) = U '--' g*V, 

where V E H 4\RPn). Applying owe have U '--' 71" *W4; = U '--' 71" *V, consequently, 
W4i = V and a4; = 0. 

By the preceding argument it also follows that a4;+2 = 0, since Sq4i+ 2 is re
ducible for i > 0. Finally, from Sq4i+ 3 u = Sq1(u '--' g*W 4;+2) = 0, we obtain 
a4i+3 = 0. This establishes the induction step and therefore the theorem. 

5. Projective spaces under duality 

We will use the definitions and notations of [14]. In particular, all the spaces 
under consideration are assumed to have a base point, the suspension is the 
reduced suspension, and {X, Y} denotes the S-maps from X to Y. All 
the homology and cohomology groups are taken reduced, with coefficients in Z2 . 

Let CPa be the complex projective space of real dimension 2a and CPa/CPb 
the .stunted projective space, where CPb is identified with the base point. 

THEOREM 5.1 t. Given RP 2n+i, there exists an integer d > n and an S-map 
i\ E { cpn+d+1/CPd, s2d+lRP2n+l) such that the induced homomorphism 

i\ *:H2q(S2d+1Rp2n+l) -)- H2q(CPn+d+l;cPd) 

is an isomorphism for all q. Moreover, if 2k-l ~ n < 2\ then d + 1 = g2\ for some 
integer g. 

Proof. Let X = RP 2a/RP 2b+l and Y = cr;cpb_ The canonical fibration 
RP 2a+i-)- CPa induces a map f: X-)- Y, which in cohomology gives isomorphisms 
in even dimensions. Let {f} E {X, Y} denote the S-map determined by f. With 
N large enough we take imbeddings X, Y c SN so as to obtain N-duals DNX, 
DNY. If DN:{X, Y}-)- {DNY, DNX} is the Spanier-Whitehead homomorphism, 
we have the following commutative diagram: 

Hq( Y) L Hq(X) 

t The existence of the map >-. was pointed out to us by E. H. Spanier. For our purposes, 
we could have equally well used the map w constructed by James in [9; p. 138]. 
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where ~N is the Alexander duality isomorphism and >-.* is the homomorphism 
induced by the S-map >-. = DN{f}. Clearly, >-.* is an isomorphism for q even. 

Now, if 2a = 2l'<2n+ll - 2 and 2b = 2l'<2n+I) - 2n - 4, it follows from the 
Atiyah-James duality for projective spaces ([5; Th. 6.1]) that DNX is of the 
same S-type as RP 2n+i. Also, for some d > n, DNY is of the same S-type as 
cpn+i+d/CPd. Since N - 2b - 3 is the highest dimension in which both DNX 
and DNY have non-trivial cohomology, we have 

{DNY, DNX} = {SN-2b-3-2(n+l+d)cpn+l+d/CPd, sN-2b-3-(2n+l)RP2n+ll 

= {CPn+l+d/CPd, s2d+1Rp2n+l}, 

and this proves the existence of A with the property that A* is an isomorphism 
in even dimensions. 

Finally, to determine the form of d, let x E H1(RP 2n+1) and wd+iE 
H 2d+2(cpn+l+d/CPd) be the generators. We have >-.*s2d+lx = wd+l, and, since the 
Steenrod squares commute with S-maps, we obtain O = Squ >-. * S 2d+1x = Sq2i wd+ 1 

= ( d 11) wd+Hi for all i > 0. Therefore, ( d t 1) == 0 mod 2 for all i 

1, · · · , n, and consequently, d + 1 = g2k for some integer g. 

6. Secondary cohomology operations 

To prove non-immersion results for RPn when n + 1 is not a power of two, 
we use secondary operations of two variables. They are a particular case· of the 
stable secondary cohomology operations of several variables axiomatized by 
Adams; they are constructed from suitable pairs of relations in the Steenrod 
algebra A over Z2 . 

Let 

(6.1) 

(6.2) 

a.(3 = L;;'=1 a1cf31c = 0 and 

a.O = L;;'=l <X.kOk = 0, 

be two homogeneous relations in A of degrees r + 1 and r, respectively. The 
meaning of the composite operations a.(3 = 0 and a.O = 0 is as in [3; p. 98]. If tk 
is the degree of Ok , then t1c + 1 is the degree of (3k . In general, given a pair of 
relations, in order to write them in the form ( 6.1), ( 6.2) we allow some of the 
(31c and Oi to be the zero operation. We suppose that r > t1c ;;=;; 0 where t1c = 0 is 
permissible only if Ok is the zero operation. 

With the above relations we construct a stable secondary cohomology opera
tion e. This operation is defined on pairs of cohomology classes u E Hq(X) and 
v E Hq+1(X) which satisfy the condition (3(u) + O(v) = 0 or, equivalently, 
(31c(u) + 01c(v) 0 fork = 1, · · · , m. It takes values on homogeneous cosets, 
precisely, 

where 

(6.3) 
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The existence of the operation 0 is a consequence of the general result of 
Adams in [1; Th, 3.6.1], and, using his notation, all we need to do is exhibit a 
pair (d, z) constructed from the relations. To do this, let Co be the free graded 
left A-module generated by ao and a1, where a; is of degree i for i = 0, 1. Con
sider C1 to be the free graded left A-module on m generators b1, • • · , bm, with 
bk of degree tk. Define d:C1--+ Co by dbk = f3k(ao) + 0k(a1) on each generator. 
If we set z = L~'.:1 akbk , it follows from ( 6.1) and ( 6.2) that z is homogeneous 
of degree r, and dz = 0. Now, if u and v are cohomology classes as above, define 
E:C0 --+ H*(X) to be the left A-map of degree q given by E(a0 ) = u, E(a1) = v. 
Clearly the condition f3(u) + 0(v) = 0 is equivalent with Ed = 0. Finally, the 
indeterminacy ( 6.3) follows from the expression for z. 

The operation 0 satisfies the following Peterson-Stein type formula: 

THEOREM 6.4. Let f:X--+ Y be a map and u E Hq(Y), v E Hq+i(Y) be such 
thatf*f3(u) + f*0(v) = 0. Then the operations E>(f*u,f*v) and a1 ({3(u) + 0(v)) 
are defined, and E>(f*u, f*v) = a1({3( u) + 0( v)) mod Qq+r ( 0, X) + f*Hq+r ( Y). 

Here, the functional operation a1 is defined as in [3; p. 99]. The proof can be 
easily obtained along the same lines as in the proof of [4; Th. 10.8] and for this 
reason is omitted. 

Now we will establish conditions for 0 to vanish because of dimensional reasons. 
If A is the Steenrod algebra over Z2, let Ak c A be the vector subspace of 
homogeneous elements of degree k and let B ( q) be the maximal left ideal of A 
which annihilates all cohomology classes of dimensions ~ q (see [15; p. 26]). 
Through relations (6.1) and (6.2), we define the integer p = p(E>) to be the 
maximal riumber fulfilling the following conditions: either /3k E B (p) and 
0k E B(p + 1), or a1c E B(p + tk + 1), for all 1 ~ k ~ m. Let H*(X) be the 
cohomologyalgebraovertheSteenrodalgebraA.Ifu E Hq(X) andv E Hq+1(X), 
let A[u, v] c H*(X) be the subalgebra over A generated by tt and v. Suppose 
f3(u) + 0(v) = 0, so that 0(u, v) is defined. 

THEOREM 6.5. If (A[u, v])q+r = 0, then E>(u, v) = 0 for all q ~ p(0). 

Proof. Letf:X--+ K1 X K2 be a map such thatf*,,q = u andf*l'q+1 = v, where 
K1 = K(Z2, q) and K2 = K(Z2, q + 1) are Eilenberg-MacLane spaces and 
% , ')'q+1 denotes the fundamental cohomology classes in K1 X K2. Now, if 
q ~ p(0), from (6.4) we obtain that (see [3; Th. 6.6]) 

0(u,v) = a1(/3(,'q) +0(1'q+1)) = 0 

with indeterminancy Qq+r(E>, X) + f*Hq+r(K1 X K2). But, (A[u, v])q+r = 
f*Hq+r(K1 X K2) = 0; consequently 0(u, v) = 0 with its natural indeterminacy 
and this ends the proof. 

7. The cohomology operations <1>2; and 02; 

Let <I>2; , with j ;;: 2, be the family of secondary cohomology operations con
sidered in [4; §6]. We recall that these operations are associated with the single 
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relations: 

(7.1) P4k = Sq1 Sq4k + (Sq2 Sq1) Sq4k-2 + Sq4k Sq1 = 0, if 2j = 4k, 

(7.2) P4k+2 = (Sq2 Sq1) Sq4k + Sq4k+2 Sq1 = 0, if 2j = 4k + 2. 

45 

Let the operations @2i of two variables be constructed using a pair of rela
tions, according to the scheme of the preceding section. One of these relations 
will always be either (7.1) or (7.2), and the other relation will contain the term 
Sq2i Sq2. This second relation varies with the value of 2j modulo 8. We list below 
the four cases for the second relation: 

(7.3) <J'Sk = Sq2 Sq8k + Sq4 Sq8k-2 + Sq8k Sq2 + Sq8k+l Sql = 0, 

(7.4) 

(7.5) 

_ s 6 s 8k-2 + s sk+l s 3 + s 8k+2 s 2 + s sk+a s 1 <J'Sk+2 - q q q q q q q q 

<J'sk+4 = (Sq4 Sq2) Sqsk + Sq8k+4 Sq2 + (Sq4 Sq8k+l) Sq1 

(7.6) <J'Sk+6 = Sq4 Sq8k+4 + Sq8k+6 Sq2 + Sq8k+7 Sq1 = 0. 

0, 

0, 

Now, we define the operation @2i, with j ~ 4, using the pair of relations 
<J'2j = 0 and P2i = 0 completed with the zero operations to take the form ( 6.1) 
and ( 6.2) respectively. For example, the operation @sk is defined on pairs of 
cohomology classes u E Hq(X) and v E Hq+1(X) which satisfy Sq2 u + Sq1 v = 0 
and Sqi u = 0, for i = 1, 8k - 2, 8k, and Sqi v = 0, for j = 8k - 2, 8k. It takes 
values in homogeneous cosets, namely 

®sk(u, v) E Hq+sH1(X)/Qq+sHi(X) 

where Qq+sH1(X) is spanned by Sqt Hq+sk+1-t(X) with t = 1, 2, 4, 8k. 
The vanishing of the operations <'.1?2i for dimensional reasons is given in [4; Th. 

6.3]. The analogous result for @2i is given by (6.5). A direct inspection of the 
pair of relations used gives 

(7.7) (@ ·) = {2j - 4 if j = 0, 3 mod 4 
P 23 2j - 5 if j = 1, 2 mod 4. 

A refinement of ( 6.5) which will be needed in the applications is the following: 

THEOREM 7.8. Let u E Hq(X) and v E Hq+1(X) be two classes such that @2iC u, v) 
is defined, wherej = 0, 3 mod 4. If (A[u, v])q+2;+i = 0 and Hq+2H(X; Z4 ) = 0, 
then @2i( u, v) = 0 for all q ~ p( @2i) + 1. 

Proof. We need consider only q = p ( @2i) + 1 = 2j - 3. As in the proof of 
(6.5), letf:X -K be a map such thatf*"fq = u,f*"fq+1 = v, where K = K1 X K2 
and K 1 = K(Z2, q), K2 = K(Z2, q + 1). Since (A[u, v])q+2i+ 1 = 0, with the 
natural indeterminacy of @2i we have, @2lu, v) = a1(f3("fq) + 0("fq+1)). From 
the relations used for 0 2; and the low dimensionality of u and v, the functional 
operation simplifies so that we obtain 

®2;(u, v) = (Sq2 Sq1)1 Sqq+i "/q+1 = Sq2 (Sq/ ( "/q+1 v "/q+1) ). 
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Now, in general, to compute Sq/ w with w E H 2q+2(K) we proceed as follows 
(see [4; 7.8]). The condition Sq1 w = 0 implies the existence of w1 E H 2q+2(K; Z4 ) 

such that w is the modulo 2 reduction of W1. The conditionf*w = 0 implies that 
f*w 1 = 2z1 for some z1 E H 2q+2 (X; Z4), and the modulo 2 reduction of z1 is a 
representative of Sq/ w. Let w = 'Yq+1 v 'Yq+1. Since H 2q+2(X; Z4) = 0 by 
hypothesis, we have z1 = 0 and Sq/ w = 0. This ends the proof. 

8. Cohomology operations in projective spaces 

We begin this section by showing how the computation of E> in the real projec
tive space can be reduced to the computation of secondary operations of one 
variable in the complex projective space. 

Given two homogeneous relations as ( 6.1) and ( 6.2), suppose that they are of 
degrees 2k + 2 and 2k + 1, respectively. Let E> be an operation associated with 
this pair, and cf,, a secondary operation of one variable associated with the single 
relation ( 6.2). 

Let RP"' and CP"' be the infinite dimensional real and complex projective 
spaces and x E H 1(RP"') and w E H 2(CP"'), the multiplicative generators. To 
determine the action of E> in pairs ( x2\ x2i+1), set n = i + k and let d be an integer 
associated with RP 2n+i as in ( 5.1). Then we have: 

PROPOSITION 8.1. If E>(xu, x2i+1) is defined, then <f>(wa+i+i) is defined and 
E>(x2\ x2i+1) ~ 0 if and only if <I>(wa+i+i) ~ 0. 

Proof. Restricting ourselves to RP 2n+ 1, let A be the S-map of (5.1); then 
x*s2a+1(x2\ x2;+i) = (0, wa+i+i). The naturality and stability of E> imply that 
E>(O, .wa+i+_;-) is defined, and with the same indeterminacy we have 

A *s2d+le(x2\ x2i+l) = E>(O, wd+Hi) = <f>(wd+Hi). 

Now, since A* S2a+i is an isomorphism in odd dimensions, the conclusion of ( 8.1) 
follows easily. 

In view of the above result, to compute E>2j in pairs of cohomology classes of 
the real projective space, we will first compute the operations 4'2j in some classes 
of the complex projective space. 

Remark. The operation <p2j is associated with the relation p2j = 0 and has, in 
general, a smaller indeterminacy than the operation of one variable that one gets 
from the same relation p2j = 0 completed with the zero operations so that 
(}"2j = 0 and p2j = 0 give rise to the operation E>2j . 

Form a positive integer, we denote by a(m) the number of non-zero terms in 
the dyadic expansion of m. 

THEOREM 8.2. Given 4' 2j , let a = 2r be such that a ~ 2j < 2a. Let c be an integer 
which satisfies 2c < 2j - 2 and a(c + j) > a(c). Then fort = ha + c with 
h ~ 1, we have that 4'2j(wt) is defined, and with zero indeterminacy 

( t) ( 2c ) t+j 
<1>2i w = h 2j _ a w • 
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Proof. With u = wha, v = w°, the hypotheses of the product formula in [4; Th. 
6.4] can be verified. In fact, it is easily seen that <l>2i(u) and <l>2iv) are defined; 
the conditions Ak(u) = 0 for 1 :;;; k ;;; 2j follow from a(2ha + k) > a(2ha) 
(see [4; 8.2]); also A2iv) = 0 follows from the hypotheses a(c + j) > a(c). 
The remaining conditions are trivially satisfied. Therefore, with zero inde
terminacy, we have 

cf>2iw1) = <l>2iu v v) = u v <l>2i(v) + I:;t:~ <l>2i-2k(u) v Sq2kv. 

Now, since 2c < 2j - 2, from [4; Th. 6.3] we have <l>2i v) = 0. Also, from [4; 
Th. 8.3] we have, for O:;;; k;;; j - 2, <l>2i-2k (u) = 0 if 2j - 2k ~ a and <l>a(u) 
hwha+a/2. Consequently, 

<I>2i(w 1) = <I>a(u) '-J Sq2i-av = h ( 2j 2~ a) wt+i_ 

THEOREM 8.3. Given @2i, let a = 2r be such that a ;;; 2j < 2a. Let c be an integer 
which satisfies c == 3 mod 4, 2c < 2j - 6 and a(c + j) > a(c). Then fort= ha+ c 
with h ;:::; 1, we have that ®2i(x 2\ x 2t+ 1) is defined, and with zero indeterminacy 

c. ·( 21 21+1) = h ( 2c ) 21+2H1 "CJ23X,X 2 . X • 
(I - a 

Proof. It is straightforward to verify that under the given hypotheses, ®2i 
is defined and has zero indeterminacy. From (8.1), it follows that <l>2i(,/+Ht) 

is defined and has zero indeterminacy where d is associated with RP2t+2i+1 as 
in (5.1). Therefore d + 1 = g2k where 2k-i :;;; t + j < 2k and thus d + 1 == 2ra. 
All conditions of (8.2) are satisfied for <l>2iwa+1+t), and we have 

<I>2j(Wd+1+t) = <I>2j(W(2r+h)a+c) = (2r + h) (2j 2~ a) w(2r+h)a+c+J 

= h ( 2c ) <2r+h)a+c+i 
2j - a w • 

Clearly, (8.3) follows from this equality and (8.1). 

9. Non-immersion of real projective spaces 

The non-immersion results will be obtained from the fact that some multiple 
of the Hopf bundle does not have enough independent non-zero sections. 

THEOREM 9.1. Let~ be the Hopf bundle over Rr. Then the bundle (2n - 4)~ 
does not have n + l independent non-zero sections in the fallowing cases: 

( i) if n = 2r + 28 + 1 with r > s ;:::; 2 and n > 16; 
(ii) if n = 2r + 2 and n > 6. 

From (9.1) and Theorem 1.1, we immediately obtain the following: 

THEOREM 9.2. The real projective space RPn cannot be immersed in R2n- 5 if 
n = 2r + 2• + 1 with r > s ;:::; 2 and n > 16, or if n = 2r + 2 and n > 6. 

The result for n = 2r + 2 is known and was established by Baum and Browder 
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in [6], using a different technique. The case n = 2r + 2• + 1 implies our main 
non-immersion result of [4; Th. 12.3] for RPm with m = 2r + 2• + 3, with the 
single exception of m = 15. However, the non-immersion result of RP 15 is con
tained in the theorem of James (3.4). 

Sanderson has proved in [13] that RPn+2 with n = 4k + 1 and knot a power of 
two can be immersed in R2n- 4. Combining this with (9.2) we have: 

THEOREM 9.3. The three consecutive real projective spaces RPn, RPn+1, and 
RPn+2 have the best possible immersion in the same euclidean space R2n- 4 for all 
n > 16 of the form n = 2r + 2' + 1 with r > s ~ 2. 

Proof of (9.1). We divide the proof of (i) into three cases. 
Case 1: r > s + 1 ~ 4. If (2n - 4)~ has n + 1 sections, (2n - 4)~ = n + 1 + 7/ 

where 7/ = (E, RPn, 11") is an (n - 5)-vector bundle over RPn. We have 
Wn_6(71) = 0 and from (2.2) it follows that H*( (Rr)n) is a trivial ring. 

The Thom space of (2n - 4)~ is RP 3n-4/RP 2n-s ,...., sn+1(Rrl. If 
U E Hn- 5 (E, Eo) is the Thom class of 7/ and x2n-4 and x2n- 3 are the first two non
trivial classes of H*(RP 3n-4/RP 2n-s), under the natural identification H*(E, E 0 ) 

~ H*( (Rr)n), we have 

(9.4) x2n-4 = sn+iu, x2n-3 = 3n+1cu \J 7l"*x). 

We will compute a secondary cohomology operation @2,-(x2n- 4, x2n- 3) that 
leads to a contradiction. With the notation of (8.3), let 2j = 2r + 2• = n - 1, 
a= 2', c = 2• - 1, and t = a+ c = n - 2. One easily verifies that the conditions 

~f (8.3) a,re satisfied and that ( 2 . 2c ) == 1 mod 2. Then @2,-(x2\ x2t+1 ) 
• 0 - a 

x2t+2;+1_ Therefore, by the stability of the operation, we have 

82,-(U, U '--' 7l"*x) r" 0. 

On the other hand, from (7.7), we have that n - 5 = p(82;) and 
,(A[U, U '--' 7l"*x])2n-s = An(U) + An-1(U '--' 7l"*x), since H*((Rr)n) is a trivial 
ring. Now, sn+lAn( U) = An(X 2n-4 ) and sn+lAn-1( U \J 7l"*x) = An-1(x2n- 3 ). 

From [4; 8.2] it follows that An(x 2n- 4 ) = 0 and An_1(x2n- 3 ) = 0. Therefore, the 
hypotheses of (6.5) are satisfied, and we have 82;(U, U '--' 7l"*x) = 0. This 
contradiction establishes Case 1. 

Case 2: n = 2r + 5. If we suppose (2n - 4n has n + 1 sections, as in Case 1, 
we obtain an (n - 5)-vector bundle 7/ with Wn-s(TJ) = 0, W1(71) =0, and 
W2(71) r" 0. Let x2n- 4 and x2n- 3 be as in (9.4). With 2j = 2r + 4 = n - 1, a= 2r, 
c = 3, and t a + c = n - 2, we verify the conditions of (8.3) and that 

( 21 
2~ a) == 1 mod 2. Then 82;(x2

\ x2t+i) = x2t+2 i+1

, and consequently 

82;(U, U '--' 7l"*x) r" 0. 
In this case, in order to obtain a contradiction, we need to pass to H*(Eo) -

the cohomology of the sphere bundle of 7/, One easily checks the hypotheses of 
(4.1) for 71. Let u E Hn- 6(Eo) be the unique class such that au= U. If v = 
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u '---' i* 1r *x, we have ov = U '---' 1r *x, El2i u, v) is defined and 

0El2i(u, v) = El2i(U, U '---' 1r*x). 

Therefore, El2j( u, v) ~ 0. 
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Now, from (7.7), we haven - 6 = p(El2i), and from (4.1) it follows that 
(A[u, v])2n-6 = An(u) + An-1(v). As in Case 1, we verify that An(x 2n- 4) = 0 and 
An-1(x2n- 3) = 0, therefore (A[u, v])2n-B = 0. Then, from (6.5) we have 
El2j( u, v) = 0. This contradiction establishes Case 2. 

Case3:n = 2r + 2r-l + 1. Letp = 21'Cn) - (n + I) and q = 21'(n) - (2n - 4). 
From (I.I), to establish that (2n - 4)l does not haven+ I sections it is enough 
to prove that pl does not have q sections. If we suppose that pl has q sections, 
then pl = q + 'I/, where 'I/ is an (n - 5)-vector bundle over RPn. We have 
Wn-5('//) = 0, W1(11) = 0, and W2('//) ~ 0. The Thom space of pl is Rr+P; 
RPp-l "-' Sq(RPnr. As before, we have xp = squ and XP+l = Sq(U ,-.., 1r*x), 
where U E Hn-5(E, Eo) is the Thom class of 17. Now, with 2j = 2r + 2r-t - 2 = 
n - 3, a = 2r, C = 2r- 2 - I, and 2t = 2ha + 2c = P, where h = 2\0(n)-r-l - I, 

we verify the conditions of (8.3) and that ( 2j 2~ a) = I. Then, El2i(xP, xP+1) = 

xP+2i+1, and, consequently, El2J"( U, U ,__, 1r *x) ~ 0. The vector bundle 17 satisfies 
the conditions of (4.1), and if u E Hn- 6(Eo) is the class such that ou = U, with 
v = u ,__, i*1r*x, we have El2j(u, v) ~ 0. 

Again, from (4.1), it follows that (A[u, v])2n-s = An_2(u) + An_3(v). Using 
[4; 8.2], we have An-2(xP) = 0 and An-a(xP+1) = 0; and then (A[u; v])2n~s = 0. 
Since n is odd, we have Hn-4(RPn; Z4) = 0, and the Thom isomorphism implies 
H 2n- 9(E, E0 ; Z4) = 0. From this and the cohomology sequence of the pair 
(E,Eo), we obtain H 2n-10(Eo;Z4) = 0. Now, sincej = 3 mod 4 and dim u = n -
6 = p ( El2i) + 1, the conditions of ( 7 .8) are satisfied and consequently 
@2i( u, v) = 0. This contradiction establishes the Case 3. 

Finally, to prove (ii), if we suppose that (2n - 4)l = n + I + 11 where17 is an 
(n - 5)-vector bundle over RP\ then sn+\Rr)~ ""' RP3n-4/RP 2n-5_ We will 
show that this stunted projective space cannot be an ( n + I )-fold suspension 
when n = 2r + 2 and n > 6. 

Let i[r2, be the secondary cohomology operation of one into two variables con
sidered in [4; p. 73]. The first non-trivial cohomology class of RP 3n-4/RP 2n- 5 is 
x2n-4, where 2n - 4 = 2'+1, and we have x2n- 4 = sn+Iu with u as in (9.4). From 
[4; Th. 11.5] we obtain that W2,(x2n-4 ) ~ 0. Therefore W2r( U) ~ 0. But it is easy 
to verify that U satisfies the hypotheses of [4; Th. 11.8] and hence W2r( U) = 0. 
This contradiction establishes (ii) and ends the proof of ( 9.1). 

CENTRO DE lNVESTIGACION DEL Ip N, MEXICO, D.F. 
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