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Introduction

If 8" denotes the n-dimensional sphere, and p is a prime, then the stable
p-primary components of the homotopy groups of spheres have been computed
by H. Cartan in dimensions less than n 4+ 2p(p — 1). The aim of this paper is
to compute the non-stable groups over essentially the same range of dimensions.
Although the results of Cartan are not published, they have been current for
several years now, and that portion of them which it will be convenient to use
here will be stated without proof. These results may be obtained by the method
of killing homotopy groups ([6], [19]), providing that the homology and co-
homology of Eilenberg-MacLane spaces, and some of the relations on Steenrod’s
reduced pth powers are known ([1], [3], [4], [9]).

The method used in this paper will be simply to study the double suspension
E:m (8" — m,02(S"™) in some detail for the case of even n. This method
has already been exploited to a considerable extent ([13], [16]), and the results
obtained here are all derived from the same methods as those used earlier. If
Q(S™™) denotes the space of loops in 8™*', and Q*(S™*") the space of loops in
(8™, it is well known that S™ " is naturally imbedded in @°(S™™), and that
studying the double suspension is just exactly studying the inclusion homo-
morphism ¢:7,(S™") — m,(@°(S™)). The new results obtained here are based
on extending the known results on the homotopy of the pair (2*(S™™), 8™™).
This is made possible by a computation of the Pontrjagin ring H+(©*(S"™); Z,)
where Z, denotes the integers modulo p, and p is an odd prime.

§1. Spectral sequences

In order to compute Hx(2(S™"); Z,) we need only formal properties of
spectral sequences. Aside from the standard properties of spectral sequences
(5], [15]) it is convenient to know what the spectral sequence of the product of
two fibre spaces looks like. In particular if f:£ — B, and f':E’ — B’ are fibre
maps ([15]) then with field coefficients the spectral sequence of the fibre maps
X EX E — B X B'isjust the tensor product (over the field) of the spectral
sequence of f:E — B with the spectral sequence of f':E’ — B’. A proof of this
statement for simplicial singular theory will be summarized, after recalling
some of the details in the definition of the simplicial singular homology spectral
sequence ([12]).

Suppose that for any space X, C(X)x denotes the normalized singular chain
complex of X. If f: E — B is a map, then a singular simplex of ¥ has filtration
m either if its dimension is less than or equal to m, or if its projection into B
may be obtained by applying degeneracy operations ([9]) to a singular simplex
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of B of dimension less than or equal to m. Letting F,.C(F)y denote the sub-
complex of C(E)y generated by simplexes of filtration m, {F..C(E)y} is a filtra-
tion of C(E)x, and there is a resulting spectral sequence {E'(f)} r = 2." If [
is a fibre map, then F*(f) is naturally isomorphic with the homology of B with
local coefficients in the homology of the fibre F of f1 & — B ([12)).

Let i — B and f':' — B’ be fibre maps. One defines a filtration on
C(E)y ® C(E')y by setting F,.(C(F)x @ C(E)x) = D ipiom FiO(B)x ® F,C(E )y .
Now the natural map V:C(E)y ® C(E")y — C(E X E'y (19], [11]) is filtration
preserving and induces an isomorphism of spectral sequences. It is now easy to
verify that if one uses field coefficients, then E'(f) ® E'(f) >~ E'(f X '), and
that 'z @ y) =drz @y + (—1)2 ® dyforx e B, .(f), m + n = q.

The preceding steps or analogous ones may all be carried through in cubical
singular theory. The only problem is to define a filtration so that the map from
the tensor product of the chain complexes of the separate fibre spaces into the
chain complex of the product fibre space is filtration preserving. This requires
some technical changes in the original filtration used in cubical theory ([15]).
However, these changes do not affect the spectral sequence at all ([12]).

Suppose that f1E — B is a fibre map, F and B have an associative multipli-
cation with identity, and f is a homomorphism with respect to this multiplica-
tion. We may choose as the fibre F of {1 — B the counter image of the identity
element of B. Now F itself also has an associative multiplication with identity.
Consider now homology with coefficients in a ring with unit. Then the multipli-
cation in K, B, or I' induces a multiplication in the homology of the respective
spaces, and we have the so called Pontrjagin rings H+(E), H*(B), and H=*(I")
(e.g. [3] No. 2). These rings are graded rings with unit, and are anti-commutative
if the multiplication in the spaces is commutative up to homotopy. Further we
have natural homomorphisms E'(f) ® E'(f) — E'(f X f), and E'(f X ) — E'(f)
making £'(f) into a graded (or bigraded) ring with unit such that d” is an anti-
derivation with respect to this multiplication. If F' is connected, the local coef-
ficient system1 H+(F) on B is a simple system of coeflicients, and the isomorphism
E*(f) ~ H+(B; H«(F)) is a ring isomorphism ([3], No. 13). This means that if
the coefficient ring is a field, then E*(f) o~ H«(B) ® Hx(F), and hence for E*(f)
to be anti-commutative it suffices for H*(B) and H+(F) to be so. Moreover, once
one knows that E°(f) is an anticommutative, the same is clearly true for E'(f)
where » = 2.

These algebras have some additional properties derived from the fact that
there are diagonal maps K— F X E, B — B X B, F — F X I’, these maps are
homomorphism, and induce diagonal maps H+(H) — Hx(E) @ H+(E), Hx(B) —
H+(B) ® H+(B), and H+(F) — H+(F) ® H+(I'), and also diagonal maps E'(f) —
E'(f) ® E'(f). These last diagonal maps commute with d” in the spectral sequences
imvolved.

! Conforming to the notation of |5], the »-th term in a homology spectral sequence will
be denoted by Er, Er = Z,,.. En.. where E;, . is the term of base degree m, and fibre de-
gree n. The differential d" in E™ has the property that d:E;,.. — En_rojret .




30 JOHN C. MOORE

Let A be a graded anti-commutative algebra with unit, and let 4, denote
the subspace of n-dimensional elements. Such an algebra 4 together with a
homomorphism of algebras ¢:4 — 4 ® A4 is called a Hopf algebra ([2], p. 137)
if Ay consists of multiples of the unit, and ¢(zx) =z ® 1 4+ 1 ® = + > a: ® by
forzed,,n > 0,and 0 < dimension a; < n. An element « € 4 is called primitive
if $(z) = 2 ® 1+ 1 ® x. Suppose that z, y are linearly independent primitive
elements, then¢(zy) =y @1+ 10wy +arey + (—1)""y@arwhenx e 4,,,
y € A, . This means ay is not primitive.

Going back now to our fibre space situation, it is immediate that if £, B, F
are connected, and Hx=(B), H«(F) anti-commutative, then the algebras Hx(),
Hx(F), and E'(f), » = 2 are Hopf algebras. Further if x € E'(f) and a is primitive
then d'x is also primitive since d" commuted with the diagonal map of E'(f).

Finally if the coefficient field is perfect,” Hx(B), Hx(F) are anti-commutative,
H.(B), H,(F) are finite dimensional vector spaces, and F, B, F' are connected,
then the structure theorem of Borel for Hopf algebras ([2], p. 138) is applicable
to the algebras Hx(B), H+(F), and E'(f). This theorem says that if 4 is a Hopf
algebra over a perfect field, and A, is finite dimensional for every 7, then as an
algebra A may be written as a tensor product of algebras with 1-generator.
Information is given concerning the generators depending on the characteristic
of the field. In particular for characteristic p, p an odd prime z* = 0 for odd
dimensional elements, and for even dimensional generators either z” > 0 for
all 7, or 2" = 0, 27" # 0, and r is a power of p called the height of .

Having made a summary of the formal properties of spectral sequences of
fibre spaces which are needed for our calculations, it will be assumed henceforth
that we are working with a singular homology (e.g. simplicial or cubical theory)
which has these properties, and for which the Hurewicz theorem holds. This
means that the results of [13], [15], and [16] apply, and in particular henceforth
a knowledge of tlie Hurewicz Theorem in terms of C-theory ([16]), or p-primary
components ([13]) will be assumed.

§2. The homology of °(S™™)

In order to apply all of the preceding paragraph it is first necessary to look a
little at loop spaces. We start by defining these. If X is a topological space, a
path in X is a pair (f, r) where r is a non-negative real number, and f:[0, r] — X
is a map ([0, 7] denotes the closed interval from 0 to r). A loop is a path (f, »)
such that f(0) = f(r). Topolggize the set of paths in X by using as a subbasis
for the topology the sets W(C, V, U) defined as follows: C is a compact subset
of [0, 1], V an open subset of the non-negative real numbers, U an open subset
of X, and W(C, V, U) is the set of paths (f, 7) such that » ¢ V, and f(ry) ¢ U
for y e C. Now let z ¢ X, and let E be the space of paths in X which start at z,
ie. those paths (f, r) such that f(0) = x. Define a map g: ¥ — X by letting

2 As is well known, the hypothesis that the field is perfect is not needed when dealing
with spaces.
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g(f, v) = f(r). It may now be shown that ¢ is a fibre map, and that F is con-
tractible. The fibre @ = ¢7'(z) is the space of loops in X based at 2. Define a
product in @ by setting (f, »)(f’, »') = (", r + +') where f”(¢) = f(t) for 0 =
t<r,and f7(t) = f'(t — ») forr = ¢t < r + »'. This product is associative and
has an identity. Consequently the loop space in any space is a space with an
agsociative multiplication with identity, 7.e. is a monoid.

Sometimes it is convenient to use the space of normalized paths (or loops),
1.e. those paths (f, ») such that r = 1, instead of the space of all paths. The
normalized loop space has the same homotopy type as the full loop space.
Therefore it is frequently convenient to fail to distinguish between them.

Now suppose that X is a space with an associative multiplication with identity
e ¢ X. Let E be the space of normalized paths in X which start at e, and let
g:E — X be the usual map defined by ¢(f, 1) = f(1). Define a multiplication in
E by setting (f, 1), 1) = (", 1) where f"(t) = f(0)f'(). Evidently ¢ is a homo-
morphism, and we are in the situation discussed in the preceding paragraph.
Further the space @ = p~'(e) is commutative up to homotopy, and consequently
its Pontrjagin ring is anti-commutative. Therefore, for the Pontrjagin rings
E'(g), r 2 2, to be anti-commutative it suffices for the Pontrjagin ring of X to
be anti-commutative. If X = Q(8™*") the loops in an odd dimensional sphere
this is indeed the case, and the fibre Q is nothing but @*(S™*.

ConveEnTIiONs: For the remainder of this paragraph p is an odd prime, all
algebras considered are over Z,, and all homology with coefficients in Z,, .

Notation. Let E(z, m) denote the Grassman algebra with 1-generator = of
dimension m, P(y, m) the polynomial ring with 1 generator y of dimension m,
and P'(y, m) the quotient of P(y, m) by the ideal generated by 3. Sometimes
we will also use the notation P*(y, m) for Py, m).

TuroreMm: If n > 0 is even, then

Hx(@(S"™) = @ E(y, p'n—1) ® ® Pla, p'n—2).
kz0 k>0

ProoF: It is well known that H+(Q28"*")) ~ P(x, n), and we have just finished
showing that there is a spectral sequence {E'} such that E is trivial, i.e.
E%. = 0form,n # 0, and Efy ~ Z, , such that E* = P(z, n) @ Hx(Q(8"™)),
and E" is a Hopf algebra for » = 2.

The proof of this theorem consists essentially of showing sthat this spectral
sequence is unique. Just knowing H+(Q*(8™™)) is a Hopf algebra we may write
it a8 ®rzo H(Yr , i) ® Quiso P*ew, 1) where r 1s a power of p or . This
means that to prove the theorem what we need to compute is m; , n, and r.
for every k.

Let 4" denote ®:5: E(yx, my), and let B' denote ®izi Pz, ni). Now we
have that since d’ is a derivation it is zero for 2 £ r < n, and since E” is trivial
d":En o & Egu . Consequently we may assume yo = d"z, mg = n — 1. Now
E"" = HE@Wo,n — 1) @ Pz, n)) ® A* @ B". Letting wy = 2" 'yo, 21 = a°
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it 1s not difficult to prove that H(E(ye,n — 1) @ Pz, n)) = E(w,, pn — 1) ®
P(z,, pn). Notice that the base degree of w, is (p — 1)n, and that w; can never
be d" of any element for its fibre degree is too small.

To find the next non trivial 4" it is necessary only to find where d"w; or d'z;y
is non zero. Since both elements w; and x; are primitive so are the elements
d'wy, and d'z; . Therefore, it is convenient to consider the primitive elements of
dimension smaller than the dimension of w; or 2; . Such elements are all of base
degree zero. This means ' = 0 for n < r < (p — 1)n, and we may assume
a = d" ", ny = pn — 2. It follows that E” """ = H(P™ (21, pn — 2) ®
E(w,pn — 1) ® Pz, pn) ® A" ® B, and letting v,. = wz ", we have that

H(P (21, Pusz) ® E(wi, pui)) = E(vi,mi(pn — 1) + 1).
Now make the following inductive hypotheses:

1) & = 0if » is not of the form p*(p — 1)n, or p™n,

2) EP = @ Ew:, (" — 2) + 1) ® Blwes, P70 — 1) ®
P, pk+1n> ® A & Bk—H,

3) BP0 = @ By, rip'n — 2) + 1) ® Plaea, pPin) @ A e
B** and

4) B = F, d” e = yi, W = Y, e = weyi¥ ', and

dpk(p_l)nwkﬂ = Zk+1 -

Suppose these hypotheses have been proved for & < m. Then E?"®™""*"is of
the desired form, and for d to be non zero it is necessary that d'v; be non zero,
or d'Tny1 be non zero. Here we are assuming » > p"(p — 1)n. The base degree
of v; is p™(p — 1)n, and for d’v; to be non zero we must have p* ' (p — L)n —
r = 0. Since this is clearly impossible, in order for d” to be non zero it is necessary
that d'z...1 be non zero. For this to happen we must have a primitive element
whose dimension is smaller than the dimension of z,.: . Such elements have
base degree 0, (p — 1)n, --- , or p”(p — 1)n. One might suppose that the base
degree could be a sum of such base degrees. However, since FE;, = 0 for r >
sup{s, ¢ + 1} we have that the fibre degree of »; is greater than or equal to
p"(p — 1)n, and the dimension of v, is greater than p™ " 'n. Similarly the
product of »; and a positive dimensional element of base degree zero has dimension
greater than p™ . Therefore, if the base degree of dwmsr is p'(p — 1)n we may
assume d'Tmi1 = v; . This means that p" ' — 1 = ri(p'n — 2) + 1, and since
r; is a power of p and p is an odd prime this is impossible. Cousequently, we may
assume 7 = " 'n, and dTpp1 = Ympr . Now we have that EP"T Y g of the
desired form,

To find the next non trivial d" we must have either d'z,,4» # 0, or d'w, . # 0.
Since these elements are primitive we again need to find primitive elements with
smaller dimension. By an easy argument the next non trivial d" is for r =
p" Y (p — 1)n, and we may assume d Wmyis = 2,42 finishing the necessary verifi-
cation to prove the inductive hypothesis.

It now follows that r; = o for all 7, and that actually E™
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Ewe, P — 1) ® Py, pPn) @ 4 @ B and Frrehnd
Py, p"n) @ A" @ B Thus the proof of the theorem is complete.

Actually it is not difficult to show that if 9#: Hx(Q*(S™™)) — H»(@(S™™)) is
the Bockstein homomorphism originating from the coefficient sequence 0 —
Zy— Zyp — Z, — 0, then 9%y, = 2z, for & > 0. This may be done by looking
at the natural map of the integer spectral sequence into the one we have been
considering.

§3. Some preliminary consideration$ relating homotopy and homology

We have seen in the last paragraph that for n even H (Q*(S™); Z,) ~ Z,
for ¢ = 0, n — 1, pn — 2, and is zero otherwise for ¢ < pn — 2. Letting @
denote the field of rational numbers, it is well known that H,(Q*(S"*"); Q) ~ @
for ¢ = 0, n — 1 and is zero otherwise. This means that the p-primary component
of the integral homology group H,._(@*(S**"); Z) is isomorphic with Z, ([13],
[16]). The question now arises as to when this group is generated by a spherical
homology class. At present it is not possible to settle this question completely.
However a good deal is known, as is shown by the next proposition.

Prorosition: For n even and greater than zero, if the p-primary component of
Hons(@(8™); Z) 45 spherical, then n = 2p" for some integer k.

Proor: Suppose the given group is spherical. Then there is a map f: S —
Q*(S™") which sends the fundamental class of H,,_,(S**~*; Z) into a generator’
“of the p-primary component of H,.,(@(S™"™); Z), and a corresponding map
11870 — (8™ so that if S:r (@(S™) — 7 (Q(S™)) denotes the sus-
pension homomorphism, then S[f] = [f] (for a map ¢: 8" — X, [g] is its
homotopy class). Now recall that ©(S™) or at least something of the
same homotopy type may be obtained by attaching cells ¢’ so that we have
S"u e ueu - . The map f may be considered as a map into K™ =
8" u---ue®™" and a new space ¥ may be formed by attaching a cell ¢

to K by means of .

The space Y space has the property that its n-dimensional cohomology group
H™(Y; Z,) is isomorphic with Z, , and letting « be a generator we have o® = 0.
However, o is just ®"a, the Steenrod pth power of a.

Now suspend Y, and denote the resulting space by s(¥V). Then s(¥) =
s(K™™) u ¢*™*, and s(K ™), the suspension of K", has the homotopy type
of the bouquet of spheres §"*' v ... v S®"* Torm a new space W by
collapsing the subspace S*"*' v ... v S§P7U™H of 5(V) to a point. Then W =
8™y "™ and if o is a generator of H™ " (W; Z,), we have that P**(a’) is a
generator of H""™'(W; Z,). Using the relations on Steenrod powers ([1], [4])
this is easily seen to be impossible if 7 is not of the form 2p* for some integer .

The preceding proposition is also valid for p = 2, and in this case is equivalent
to the theorem of Adem asserting that if S — S" is a map of Hopf invariant
1, then n is a power of 2.
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LeEMMA: If n 7s even and greater than 2, then with coefficients in Z, , p an odd
prime, the ring H=(Q(S™) is isomorphic with the ring P(yo, n — 2) ®
E(z, pn — 3) ® P(y1, pn — 2) in dimensions less than p(pn — 2) — 2.

The details of the proof of this lemma are an exercise in the use of spectral
sequences very similar to the arguments already used, and will therefore be
omitted.

Let U™ denote the space of paths in 2°(S"*") which start at the identity, and
end in 8™,

LemMma: If n s even and greater than 2, then with coefficients in Z,, p an odd
prime, Hy(U") >~ (E(z1, pn — 3) ® P(yr, pn — 2))g for ¢ < p(pn — 2) — 2.

To prove this lemma one notices that U™ is a fibre space over $"* with fibre
Q*(8™™). Then using the Wang sequence ([15]) the result follows immediately
from the preceding lemma. In this application of the Wang sequence it is neces-
sary to know that the homomorphism H,(Q@(S"™) — Hymo(@(S™) is
nothing but multiplication by o, where 7, is the generator of H,_(@*(S™™)) of
the preceding lemma.

Let g:.8""® — §"° be a map of degree p, X, the mapping cylinder of g.

LemMma: The p-primary component of mo(X,, S**°) is 7somorphic with that of
m(U") for g < p(pn — 2) — 3.

We already know that the p-primary component of m,.-3(U") is cyclic of
order p. Therefore, there is a map of S?*~° — U™ which represents a generator
of the p-primary component of mp.s(U"). This induces a map of X, into U”,
and it may be assumed that for this map S considered as a subspace of X,
goes into the base point of U". Letting L denote the space of paths in X, which
start at the base point and end in S?°, there is a map of L — Q(U™) induced
by the preceding. The homology of L is known ([14]) and with coefficients in
Z, is isomorphic with Pz, pn — 4) ® E(y:, pn — 3). Using the preceding
lemma, one calculates the homology of Q(U™") with coefficients in Z,, and sees
that it is isomorphic with P(z, pn — 4) ® E(y1, pn — 3) in dimensions less
than p(pn — 2) — 2. Now it is not difficult to see that the map L — Q(U")
induces an isomorphism of the homology groups with coefficients in Z, for
dimensions less than p(pn — 2) — 2, and therefore the p-primary components
of m,(L) and m,(@(U™)) are isomorphic for ¢ < p(pn — 2) — 4. This last state-
ment implies the lemma.

Norarion: If @ is an abelian group, let G, denote the quotient of G by the
sum of its g-primary components for ¢ £ p. Notice that if G is a torsion group
@, 1s just the p-primary component of G.

Prorosition: If n is even and greater than 2, and g < p(pn — 2) — 3 there
18 an exact sequence

0 — Tq(Spn_a) ® Zp, — 7rq+1(QZ(Sn+1): Sn_l)p - TOT(""q——l(Spnwa)) Zp) — 0.
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This proposition follows immediately from the preceding lemma, and the
fact since pn — 3 is odd the homomorphism of (87" — 7,(S***) induced
by a map of degree p is multiplication by p modulo the 2-primary component.

§4. Homotopy groups of spheres

We will now start to collect the data of the earlier sections to apply to ho-
motopy groups of spheres. First we state a result of H. Cartan on the stable
homotopy groups of spheres. This result has also been proved by H. Toda.

TarorEM: If n is even and greater than 2p, then for kt < 2(p + 1)(p — 1) —
2m 1k (S™), 18 zero except for k = 1,2(p — 1), - -+, 2(p — 1)(p — 1), 2p(p — 1),
and 2p(p — 1) — 1, muyx (8™, 45 tsomorphic with Z, for k = 2i(p — 1) i, =
1 ,p— 1 7"n+217(17—1)(sﬂ-'—1 » =2 Ly, and 7rn+2p(p—1)—1(sn+1)p o~ Zpp-1.

, t e

CoroLLARY 1: If m is even and greater than 2, then for bk < 2p(p — 1) — 2
the group mpn—asx(L(S™™), 8", is zero except for k = 2i(p — 1),7 =0, --- ,
p—l,andk =2i(p—1)— 1,2 =1, ---,p — 1, and in these exceptional cases
18 1somorphic with Z, .

The corollary follows immediately from the preceding theorem, and from the
last proposition of the preceding section.

COoROLLARY 2: The group mx(S), is isomorphic with Z, for k = 2i(p — 1),
i=1,--,pk=2i(p—1)—1,e=2,--- porfork =20p+ ){p —1) —
2, and 1s zero otherwise for k < 2(p + 1)(p — 1) — 2.

It was shown in [14], that m(S8%), =~ mu(X,, S71) for ¢ < 2p° — 1, where
f:87 — 8™ is a map of degree p, and X is the mapping cylinder of f. Conse-
quentlyfor 1 < k < 2(p + 1)(p — 1) — 1 we have m1x(S%), = m1e42(S7) ®
Zy + Tor(me (S, Z,); and the results follows.

Using the isomorphism between m,(S%, and =, :(S¥") ® Z, +
Tor(wo(S8™*), Z,) one may obtain a homomorphism A:m(S**), — (8%, .
This may be combined with the iterated suspension homomorphism
E*" 10, (8%) — mysa0-y (ST to obtain a homomorphism

£= N BP0 :Wq(Sa)P - 7rq+2(p—l)(Sa)D .

ProposITION: If @ is a generator of k(S , k = 2i(p — 1) and 0 < 1 < p
then E(a) is a generator of mairtacp1y(S)p .

To prove this proposition it suffices to show that E**™":m (%), =

Tap (ST, . However since we already know both of these groups are cyclic
of order p, it suffices to show that m,:(S™), — mak(Q2(S™*?)), is a mono-
morphism for n even, 2 < n < 2(p — 1). The kernel of this preceding homo-
morphism is an image of the group max2(Q(S™), §"™),, but this group is
zero by corollary 1, and the result follows.

TuroreM: If 0 < n < p, then mumu(S*"), is isomorphic with Z, for k =
2p —-1),7=1,---,p—Lk=2ip—-—1)—-1Li=n+1--,p— 1,
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and is isomorphic with Z for k = 2p(p — 1), or 2p(p — 1) — 1. For other
values of k such that 1 < k < (p 4+ 1)(p — 1) — 2, monx(S*), is trivial.

These results are summarized in table 1, with a slight amount of additional
information. The proof of the results consists in filling in the table by using the
preceding theorem, corollaries, and proposition of this chapter. This can be
done most easily by working from right to left. Letting » be even and greater
than 2, notice that E:mns4x(S™ )y — maw(S™™), is an isomorphism if & =
2ip—1),i=1, - ,p—1isgeroif k =2i(p—1) - 1,7=mn, -+ ,p — 1,
and is a monomorphism for &k = 2p(p — 1), or 2p(p — 1) — 1.

TABLE 1
& T2 £(5%p Ty k(5P p o T2 (p-1) 4 £(SEP ) Topp k(S22 T,

2(p — 1) Zy Zp Zy Zyp
4(p—1) —1 Zy

4(p - 1) Zy Zy Zp Zy

2p(p — 1) — 1 Z, Zp2 Zpo—1 Zgn—1
2p(p — 1) Zyp Z p2 Z o1 Zyp
20+ Dp —1) — 2 Zyp Zy Zp Zp

To fill in the bottom line in table 1 requires only a slight additional computa-
tion, and we have then listed all the non-zero p-primary components of the
homotopy groups (8" for neven and & < (p + 1)(p — 1) — 1.
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