
SOME IMMERSIONS ASSOCIATED WITH BILINEAR MAPS 

BY JOSE ADEM 

1. Introduction 

As it is well known, the real projective space pn has an immersion in the 
euclidean k-space R\ if and only if there exists a nonsingular skew-linear map 
f:Rn+i X Rn+i - Rk+1, with k > n. Skew-linear means that f( u, v) is linear in 
v andf (- u, v) = -f( u, v), for all u, v E Rn+i (see [2], [3], [6]). 

Does the existence of f imply the existence of a nonsingular bilinear map 
g:Rn+i X Rn+i - RH 1? In general, this seems to be a very difficult question 
and it is not even known if it is possible to reduce the existence of g to a homotopy 
problem. . 

If such g exists, we say that the immersion of pn in Rk is associated with a 
bilinear map. Clearly, it is enough to prove the existence of g for the best 
possible immersion, that is, for the minimal k. 

K. Y. Lam proves in [5] that such g exists for all the immersions of pn in Rk 

when n:::;; 15. 
In this paper, using some relations between associators and commutators in 

the Cayley algebra, we construct several nonsingular bilinear maps. Some of 
these maps allow us to extend the above result further. In fact, we get. that all 
the immersions of pn in Rk are associated with bilinear maps for n :::;; 23, with 
the possible exception of n = 19. 

2. Some properties of Cayley numbers 

A nonassociative algebra K is alternative if (xx)y = x(xy) and (yx)x = y(xx) 
for all x, y E K. Define the commutator and the associator by 

[x, y] = xy - yx, 

[x, y, z] = (xy)z - x(yz). 

In an alternative algebra it follows that the associator is skew symmetric in 
its three variables ( [9; p 27]). Then 

[x, y, z] = -[x, z, y] = [y, z, x] = • • • 

Besides [x, x, y] = 0, [x, y, x] = 0 and [y, x, x] = 0, the associator of. an alterna
tive algebra satisfies many identities, as for example ([4; p 130]) 

(2.1) [xy, z, x] = [x, y, z]x. 

If we suppose that K is an alternative algebra without divisors of zero and of 
characteristic not 2, then we have 

(2.2) {
[x, y] ;= 0, 

if [x, y, z] ;= 0 then [x, z] ;= 0, 
[y, z] ;= 0. 
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This result is due to Bruck and Kleinfeld ( [1; p 885]) and their proof will be 
given below for the case of the Cayley algebra. We will use this result as follows. 
If any of the commutators of (2.2) is zero, say 

(2.3) if [x, y] = 0 then [x, y, z] = 0. 

From now on let K be the Cayley algebra over R, where R is the field of real 
numbers. We recall that K is an alternative algebra without zero divisors and 
that it has an involutorial antiautomorphism x - x, where x is the conjugate 
of x, satisfying 

xy = fjx, x = x for all x, y E K. 

Also, with the usual embedding R c K, we have that t(x) E R and n(x) E R, 
where 

t(x) = x + x and n(x) = xx = xx, 
are, respectively, the trace and the norm of x. 

We can regard the elements of K as ordered pairs of quaternions. Given Cay
ley numbers x = ( ai, a2), y = (bi , b2) where a1 , a2 , bi , b2 , are quaternions, 
the product xy is given by 

(2.4) 

and the conjugate x of x by x = ( ai , - a2). 
We will give now the proof of (2.2) directly for the Cayley algebra. Let r E R 

. be defined by 

r = n(x + y) - n(x) - n(y) 

From the definition of trace and norm it is easy to verify that 

xy + yx - yt(x) - xt(y) + r = 0. 

Now, contrary to the conclusion of (2.2), suppose that [x, y] = 0, then xy = 

yx and from the above equation, we obtain that 2xy - yt(x) = xt(y) - r. 
Consequently, 

[2xy - yt(x), z, x] = [xt(y) - r, z, x] = 0. 

The equality with zero follows from the second associator, using the linear 
property together with the facts that K is alternative and that r E R. 

Then, from the first associator, equal to zero, using the linear property, the 
identity (2.1) and the skew symmetry, we obtain that 

[x, y, z](2x - t(x)) = 0, 

and since by hypothesis [x, y, z] ;a= 0, we must have 2x - t(x) = 0. But this 
implies that x E R and therefore the contradiction [x, y, z] = 0. This ends the 
proof. 

In the Cayley algebra, besides the commutator [x, y], we can define the strong 
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commutator { x, y} by 

{x, y} = xy - xy. 

Observe that both commutators have real part zero (i.e. their traces are zero), 
For {x, y} this is immediate and for [x, y] follows from (2.4) as shown in [5]. 

We have that, 

{x, y} = 0 implies [x, y] = 0. 

The proof is as follows. We have that, xy = xy is a real number. Then, left 
multiplying this equation by x, we get n(x)y = x xy = xy x, and right multi
plying this result by x, we find n(x)yx = xy n(x). Consequently, yx = xy = xy. 

To emphasize the difference between the two types of commutators we will 
refer to [x, y] as the weak commutator. 

3. The map K 3 X K 8 - K 5 

In order to obtain a map K3 X K 8 -> K5 with a weak commutator in one of 
its components, the construction of K 2 X K 2 - K8, given by K. Y. Lam in [5], 
will be extended one step further. 

If Xi, Yi E K, with i = 1, 2, 3, are Cayley numbers, let u = (x1, x2, xa) and 
v = (Y1, Y2, Ya) denote the corresponding elements of K3. Set 

(3.1) <I>1(u, v) = X1Y1 + X2Y2' 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

<I>2(u, v) = fi1Xa - x1fh, 

<I>a ( u, V) = fi1X2 - X1fj2 + XaYa , 

<l>4(u, v) = Y2Xa - X2Ya, 

<I>s(u, v) = X1Y1 - Y1X1. 

Then, define 

f(u, v) = (<I>1(u, v), • • • , <I>s(u, v)). 

THEOREM 3.6. The bilinear map f:K 8 X K 8 - K5 is nonsingular. Moreover, 
by suitable restrictions, f induces the following nonsingular bilinear maps: 

(3.7) R24 X R24 _ Rag, (3.8) R21 X R21 _ Ras, 

(3.9) Rio X Rio _ Ras, (3.10) R1s X R1s - Ra2, 

(3.11) R1s X R24 -> Ras, (3.12) R10 X R2a _ Ra1, 

(3.13) R1s X R22 _ Ras, (3.14) R11 X R24 _ Ra2. 

Proof. If f( u, v) = 0, then <I>k ( u, v) = 0 for 1 :::; k :::; 5 and from the right-hand 
sides of (3.1-5), we obtain five equations that Xi, Yi must satisfy. To prove that 
f is nonsingular we use these equations and consider different cases. 

First case: if x1 = 0 and Y1 = 0. The system reduces to three equations and 
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from these, using the fact that K has no zero divisors, it follows immediately 
that either u = 0 or v = 0. 

Second case: if x1 = 0 and Y1 7"' 0. Then, from (3.2), it follows that xa = 0, 
and with these values in (3.3) we obtain that X2 = 0, therefore u = O. The case 
X1 7"' 0 and Y1 = 0, is settled in a similar way. 

Third case: suppose that x1 7"' 0 and Y1 7"' 0. It follows from (3.1) that we must 
have, in this case, that X2 7"' 0 and Y2 7"' 0. Now, (3.2) implies that xa = 0 if and 
only if Ya = 0. Then, we need to analyze two subcases: (1) when xs = Ya = 0; 
(2) when all the Xi, Yi are different from zero. 

If xa = Ya = 0, then the system of equations reduces to 

(3.15) 

(3.16) 

(3.17) 

X1Y1 + X2Y2 = 0, 

Y1X2 - X1Y2 = o. 
X1Y1 - Y1X1 = 0. 

This is essentially the system used by Lam in his construction of the map 
K 2 X K2 -----+ K3• Since we assume that x1 7"' 0 and Y1 7"' 0, to find a contradiction, 
we proceed as follows. Left multiplying of (3.16) by Y1 and then using the as
sociative property (2.3), gives 

n(y1)X2 = Y1(xm2) = (Y1X1)Y2 = (X1Y1)Y2, 

and now, right multiplying by Y2 , we get 

(3.18) 

From this and (3.15), we obtain 

X1Y1[n(y1) + n(y2)] = 0, 

but this last result implies that X1Y1 = 0, and this is a contradiction. Therefore, 
in this subcase we cannot have f( u, v) = 0 with X1 7"' 0 and Y1 7"' 0. 

To settle the second subcase we need some preliminary steps. Since [x1 , Y1] = 0, 
it follows that [Y1 , X1Y1] = 0, then 

(3.19) 

From (3.2) and (3.5), and with the same argument used to establish (3.18), 
we get 

(3.20) 

By substitution, from (3.3) and (3.20) we obtain 

(3.21) 

Now, left multiplying by Y1 and then right multiplying by Y2 in (3.21), and using 
(3.19), gives 

n(y1)X2Y2 - X1Y1n(y2) + (x1Y1) (Y1Y2)n(ya)n(y1)-1 = 0. 
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From (3.1) we have that X2Y2 = -X1Y1, then, by substitution, we obtain 

AX1Y1 = (X1Y1) (Y1Y2)n(ya)n(y1)-1, 

where A = n(y1) + n(y2), and, by cancelling the factor X1Y1, we get that 

A = Y1Y2n(ya)n(y1)-1. 

From this result it follows that 

(3.22) Y1 = Y2n(ya)A-1 and Y2 = Y1n(ya)-1A, 

and by taking norms, we also have that 

(3.23) A2n(ya)- 2 = n(y2)n(y 1)- 1. 

Substitution of (3.22) on (3.21), gives 

Y2X2 = X1Y1(A2n(ya)- 2 - }..n(y1)- 1), 
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and using (3.23) and the definition of A proves that Y2X2 = -X1Y1. Therefore, 
from (3.1), we obtain that 

Y2X2 = X2Y2 • 

Now, the above commutativity can be used with (3.4) to establish 

XaYan(y2) = X2Y2n(ya). 

By adding this equation with (3.20) and using (3.1), it follows tb.at XaYa = 0. 
Therefore, this contradiction proves that we cannot have f( u, v) = 0, when 
all the numbers Xi, Yi are different from zero. This ends the proof that f is non
singular. 

To obtain the restrictions we proceed exactly as it is done in [5]. • Let x1 = 
(a1, a2), y = (b1, b2) be Cayley numbers represented as pairs of quaternions. 
From (2.4), it follows that 

(3.24) [x1, Yi]= (a1b1 - b1a1 + a2b2 - b2ll2, b2(a1 - a1) - a2(b1 - 51)). 

As it was pointed out before, [x1, y1] is purely imaginary, then it lies in a 7-di
mensional subspace of K, and this gives (3.7). Let r,, z, and q, denote, respec
tively, any real, any complex and any quaternion number. With (3.24) one 
easily verifies that the other maps are obtained by restricting x1 , y1 as follows. 
For (3.8), X1 = (r1, q1), Y1 = (r2, q2); for (3.9), X1 = (r1, z1), Y1 = (r2, z2); 
for (3.10), X1 = (z1, 0), Y1 = (z2, O); for (3.11), X1 = (r1, r2), Y1 = (q1, q2); 
for (3.12), x1 = (r1, z1), Y1 = ((r2, z2), q1); for (3.13), X1 = (z1, O), Y1 = (z2, 
q1); for (3.14), X1 = (r1, 0), Y1 = (q1, q2). 

Maps like (3.7) have been constructed in [7] and [8], but these maps do not 
give the restrictions (3.8-14). 

With the notation given in the introduction, we have the following 

COROLLARY 3.25 All the immersions of P" in R\ where n ~ 23 and n ~ 19, 
are associated with bilinear maps. 
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Proof. Up to n :::; 15 this follows from [5]. Now, with (3.10), P 16 and P 17 

immerse in R31; with (3.9), P 18 immerses in R32; with (3.8), P 20 immerses in 
R34; and with (3.7), F21, P 22 and P23 immerse in Ras_ Since all these immersions 
are known to be best possible, this ends the proof. 

4. The map K 2 X K4 - K 5 

In this section we construct a nonsingular bilinear map R16 X Ra2 - Ra9, 

with a weak commutator in one of its components. This map has three interest
ing restrictions. 

As before, let u E K 2 and v E K4, where u = (x1, x2) and v = (Y1, Y2, Ya, y4), 

with x; , y i Cayley numbers. Set 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Now, define 

'¥1(u, v) 

'¥2(u, v) 

'¥a(u, v) 

'¥4(u, v) 

'¥s(u, v) 

= X1Y1 + X2'fh , 

= X2Y2 - X1'fh , 

= '[j1X2 - Xi'[j2, 

= YaX2 - X1Y4 , 

= X1Y1 - Y1X1 • 

g(u, v) = ('¥1(u, v), • • ·, '¥5(u, v)). 

THEOREM 4.6. The bilinear map g:K 2 X K4- K 5 is nonsingular. Furthermore, 
by suitable restrictions, g induces the following nonsingular bilinear maps: 

( 4.7) R16 X Ra2 - Rao, 

( 4.9) Rll X R21 --)-Ras, 

( 4.8) Ria X R20 - Ras, 

( 4.10) R11 X R31 - Ra7• 

Proof. Suppose that g( u, v) = 0, then '1'1o( u, v) = 0 for 1 :::; k :::; 5, and from 
(4.1-5), we have five equations that Xi, Yi must satisfy. We consider three 
different cases. 

First case: if x1 = 0 and y1 any number. In this case, it follows trivially that 
either u = 0 or v = 0. 

Second case: if x 1 r"= 0 and Y1 = 0. Then, it follows, respectively, from ( 4.3), 
( 4.2), ( 4.4) that Y2 = 0, Ya = 0, Y4 = 0. 

Third case: if x1 r"= 0 and Y1 r"= O. Then, ( 4.1) implies that X2 r"= 0, Y4 r"= 0. 
From ( 4.4) it follows that y. r"= 0. Finally, ( 4.3) implies that Y2 r"= 0. So, in this 
case, all the Xi, Yi must be different from zero. 

Now, like in (3.18), from (4.3) and (4.5), we get 

X2Y2n(y1) = X1Y1n(y2) • 

From ( 4.1), we have that X1Y1 = -X2'[h . If we substitute this in the above 
equation, and then cancel the factor x2, we find that 

( 4.11) Y2n(y1) = -'[j4n(y2). 
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Similarly, from ( 4.2), we have that X2Y2 = x1fis , and if we substitute this and 
cancel now the factor x1 , we obtain that 

( 4.12) 

If the expressions for Ya and y4, derived from ( 4.11) and ( 4.12) are replaced 
in ( 4.4), we get 

'[i1x2n(y2)2 = -x1'[i2n(y1) 2. 

From ( 4.3), we have that '[i1x2 = xi'[i2, and combining these two results, gives 

x1'[i2(n(y1)2 + n(y2)2) = 0, 

which is a contradiction to the fact that all the Xi, y1 are different from zero. 
Therefore, g ( u, v) = 0 is not possible in this case, and this ends the proof that 
g is nonsingular. 

The restrictions are obtained as in the previous theorem. Concretely, for (4.8), 
(4.9) and (4.10) proceed exactly as for (3.8), (3.9) and (3.12). 

The other restrictions are not considered since they can be gotten from the 
Hurwitz-Radon maps. 

Maps like (4.7) are constructed in [7] and [8]. The maps (4.8-10) are new. 

5. The map Km X Km - K 2m-i 

We will give a general construction of a nonsingular bilinear map K~ X Km 
- K 2m-1, using strong commutators. • 

Let (u, v) E Km X Km, with u = (xi, ••• ' Xm) and V = (Yi, ••• ' 1:/m), 
For 1 s p, q s m, define 

Now, set 

(5.1) 

(5.2) 

'lri(u, v) = I:;=i Xpyp, 

'¥k(u,v) = I:<I>p,g{u,v), 

where 2 s k s 2m - 1, and the sum runs over all p S q with p + q = k. De
fine 

f(u, v) = ('1r1(u, v), • • ·, '¥2m-1(u, v)). 

THEOREM 5.3. The bilinear map f:Km X Km - K2m--1, where m ~ 2, is non
singular. More over, f induces the fallowing nonsingular bilinear maps: 

(5.4) 

where n ~ 1 and O S k S 3. 

Proof. By induction on m. True for m = 2, since in this case the system is as 
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(3.15-17), excepting that it has a strong commutator. Suppose that f is non
singular for all q < m. As before, we consider different cases. 

First case: if Xi = 0 and Yi = 0. Then, if we reindex the variables (i.e., xp' = 
Xp+i and yp' = YP+i), we get the map form - l and, by the induction hypothesis, 
f is nonsingular. 

Second case: if Xi = 0, Yi ¢ 0 and f ( u, v) = 0. We will prove by induction 
that X:,, = 0 for all 1 ~ p ~ m. Suppose that xi = • • • = Xt = 0 for some t < m. 
With k = t + 2 we have k ~ 2m - 1, and the component wk(u, v) = 0 reduces 
to 

'l't+2(u, v) = f}iXt+i = O. 

Since Yi ¢ 0, it follows that Xt+i = 0, and this completes the induction step. 
Therefore u = 0. The case xi ¢ 0 and Yi = 0 is settled in a similar form. 

Third case: if Xi ¢ 0, Yi ¢ 0 and f(u, v) = 0. Here, we will arrive to a con
tradiction. Before, we will prove the following. For all 1 ~ p ~ m we have that, 
either ( 5.5) or ( 5.6) holds, where 

(5.5) 

(5.6) 

Xp = YP = 0, 

XiYin(yp) = Xpypn(yi) ¢ 0. 

This is again by induction. Suppose that it holds for all 1 ~ p ~ t, with t < m. 
This induction hypothesis implies that 

(5:7) <I>p,a(u,v).=0 forall p,q ~t. 

First, we will prove (5.7). From '1'2(u, v) = XiYi - xiy1 = 0 and (5.6) it 
follows that xpyp = xpyp . So, in either case ( 5.5) or ( 5.6), we have 

4>p,p( U, V) = Xpyp - Xpyp = 0. 

for all p ~ t, and this proves (5.7) for p = q. Also, from (2.5) it follows that 

( 5.8) xpyp = yPxP for all p ~ t. 

If p ¢ q, with p, q ~ t, consider <I>p,a( u, v) = 1} pXq - Xpf}q . If Xp = YP = 0 
or Xq = yq = 0, then <I>p,q( u, v) = O. Otherwise, from ( 5.6) we have 

xiyin(yp) = Xpypn(yi), 

XiYin( yq) = Xqyqn(yi), 

and from these two equations, we get 

Xpypn(yq) = Xqyqn(yp). 

With this and ( 5.8), reversing the steps of ( 3.18), we obtain 

4>p,q{ U, V) = f}pXq - Xpf}q = 0, 

and this ends the proof of ( 5. 7) . 
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Going back to the induction step, consider 

'¥1+2Cu, v) = L <I>p,q(u, v) = 0, 

where as in ( 5.2) the sum runs over all p =::; q with p + q = t + 2. Substitute 
(5.7) to obtain 

(5.9) 

From x1 -,,6-0 and Y1 -,,6-0, it follows that X1+1 = 0 if and only if Y1+1 = 0. If 
X1+1 -,,6-0 and Y1+1 -,,6-0, with X1Y1 = Y1X1 and ( 5.9), we obtain 

UJt+1X1)Y1 = !Jt+1(X1Y1) = X1+1n(y1), 

but X1Y1 = x1y1 is a real number, then 

Y1+1(X1Y1) = (X1Y1)Y1+1 = X1+1n(y1), 

and from this, we get 

X1Y1n(Y1+1) = Xi+1Y1+1n(y1), 

so, the induction is completed, and either (5.5) or (5.6) holds for all 1 :::; p =::; m. 
To finish the proof, let 

(5.10) i = 1, ... , 8 

be all the terms such that ( 5.6) holds, and set 

,\ = L}=1 n(y,Jn(y1)- 1 

Then,\ -,,6-0 and by substitution on (5.1) of all the non zero terms (5.10), we 
get AX1Y1 = 0. Therefore, x1 = 0 or Y1 = 0, contradicting the assumption. This 
ends the proof that f is nonsingular. 

The induced maps are trivially obtained from the component '1'2(u, v) = 
X1Y1 - x1y1 , by restricting x1 , Y1 to be a pair of real, complex and quaternion 
numbers. 

Maps like (5.4) are constructed in [7] and [8]. 
With n = 2' and k = 3 the map ( 5.4) gives the best possible immersions of 

P", p•+ 1 and p•+ 2, wheres = 2'+a + 5 and r ~ 0. 
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