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ON MAXIMAL SETS OF ANTI COMMUTING MA TRICES 

BY JOSE ADEM 

1. Introduction and Main Result 

Let A 1, • • • , A,. be a set of real matrices of order m, satisfying the conditions 

(1.1) 

(1.2) 

A/= Yil, 

(j, k = 1, • • ·, r;j "'F k), 

where J is the identity matrix and each Yi = 1 or -1. Matrices fulfilling 
condition (1.2) are said to anticommute. Let !!it and f denote the number of 
matrices, respectively, with Yi= -1 and Yi= 1, in (1.1). We have, !!it+ f = r. 

Given a set of matrices over the real field, as above, we can associate with it 
an equivalent set B1, • • • , B,. of matrices over the complex field, by defining 

(1.3) Bi= { Ai 

iAi if 

if Yi= -1, 

Yi= 1, 

where i = ✓-1. The new set contains !!it real and .Y pure imaginary matrices 
and they satisfy the conditions 

(1.4) for j "'F k, and Bl= -I. 

Clearly, the conditions (1.1), (1.2) for real matrices, and (1.4), for real and 
pure imaginary matrices, are equivalent. Also, if we change the place of i in 
(1.3), and set Bi = iAi for Yi = -1, etc., then, we get, in (1.4), that B/ = I, for 
all}. 

Hurwitz determined in [6] maximal sets Ai of anticommuting matrices of 
order m over the complex field, fulfilling conditions Af = I, for allj1. Eddington 
showed in [ 4] that any set of anticommuting matrices of order four, such that 
A/= -I, has at most five matrices; and, if all are real or imaginary, then !!it= 
2 and f = 3 in every set of five. Newman, using a simple argument, generalized 
in [9] the first part of Eddington's result (when all Al = -I) and explicitly 
established the following: if m = p2q, with p odd, is the order, then, for r, the 
number of matrices, we haver~ 2q + 12. The same bound also is obtained 

'Hurwitz studied composition of quadratic forms (also Radon in [11] with a different setting) 
and he looked for maximal sets of skew matrices. Recently, D. B. Shapiro in [12], got some 
interesting generalizations of this problem and extended Hurwitz's results to arbitrary fields of 
characteristic not two. The author in [l] also verified Hurwitz's results for fields of characteristic 
not two. 

2This result about the bound for the numbE'.r of matrices of order m, fulfilling conditions (1.1), 
(1.2), has also been proved by Littlewood in [9], using representation of groups. Generalizations 
have been given by Eichhorn in [5], for matrices with elements in an arbitrary field of characteristic 
not two, and by Dieudonne in [2], for semi-linear transformations of an m-vector space over a 
skewfield of characteristic not two. Another generalization by Kestelman is given in [7;Th2], for 
regular anticommuting matrices. 
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from Hurwitz's work, and both, Hurwitz and Newman, showed that this 
maximum can always be attained with sets where each matrix is either real or 
pure imaginary . 

. For the second part of Eddington's result, concerning the values of !!it and f 

in a maximal set, Newman wrongly stated in general, that !!it - f = -1 or 7. 
The principal ail,ll of this paper is to establish the correct relation for !!it and 

f (cf.(1.7)). For this purpose we first consider some definitions. 
An E-set is a set of matrices satisfying (1.4) and such that, each matrix is 

either real or imaginary .. 
Given m = p2q, with p odd, write q = 4a + b, where 0 :s b :s 3. Then, set 

(1.5) f!it(m, t) = 4t + b and f(m, t) = 2q + 1 - 4t - b, 

for each O :st :s 2a + [b/3]. 

From our previous remarks, it follows that, a maximal E-set of matrices of 
order m, is an E-set of2q + 1 matrices of order m. Hence, for a maximal E-set, 
the value of f!it(m, t), determines the value of f(m, t). 

Our main result is the following 

THEOREM 1.6. There exists a maximal E-set of matrices of order m, if and 
only if, for some t = 0, 1, • • •, 2a +[b/3], the numbers of real and imaginary 
matrices are, respectively, f!it(m, t) and f(m, t). 

Observe that, from (1.5), we obtain the following relation 

(1.7) f!it(m, t) - f(m, t) = B(t - a) - 1, 

and this, together with (1.6), should correct the statement of [10; Th2]. 
Using the equivalence between (1.1),, (1.2) and (1.4), stated at the beginning, 

the-results of (1.6) can be applied to determine maximal sets of real matrices 
fulfilling the conditions A/ = I or - I. 

Perhaps (1.6) should be established using results on Clifford algebras. How­
ever, I prefer to present a proof based almost entirely on direct and elementary 
arguments on matrices. The proof will be given in the next two sections. 

2. Some Auxiliary Propositions 

Let L = {A1 , •••,Ar} be an E-set of order m and suppose it has f!it(m) real 
and f(m) imaginary matrices. 

PROPOSITION 2.1. The collection 

forms an E-set of r + 2 matrices of which we have 9t(2m) = f!it(m) + 1 real 
and f(2m) = f(m) + 1 imaginary. 

Proof It is immediate to verify the conditions (1.4). 
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PROPOSITION 2.2. Given L as above, with m even and r 2: 2, assume that 
f(m) # 0. Then, there exists an E-set 

LO= {B3, •••,Br}, 

of r - 2 matrices of order m/2, such that, 

(2.3) if .92(m) -¥, 0, then .92(m/2) = .92(m) ::- 1 and f(m/2) = f(m) - 1, 

(2.4) if .92(m) = 0, then .92(m/2) = r - 2 and f(m/2) = o: 
where .92(m/2) and f(m/2) denote, respectively, the number of real and 
imaginary ,members of Lo. 

Proof. We refer the reader to [10; p94-96] .for a cqmplete proof. Here we will 
only outline the steps, in order to show how (2.3) and (2.4) follow. 

Clearly, jfthe matrices ofL anticommute and their squares are -I, the same 
holds for the matrices of a similar set 

From the ,assumptions that m is even, r 2: 2 and f (m) # 0,,it foijows that we 
can start with A1, an imaginary matrix, and find a real nonsingular matrix Q, 
such that (see loc. cit.) 

Q-IA1Q = el -il)' ~-IAiQ = (-ci-1 Ci) for j = 2, • • • , r, 

where each Ci is a matrix of order m/2, real or imaginary, according to the 
nature of Ai. 

Now, if .92(m) # 0, we can suppose that Az is a real matrix, hence, C2 is also 
real. It follows that the matrices 

(2.5) 

form the E-set ~o, where (2.3) holds. In the case .92(m) = 0, all the matrices C1 
are imaginary, consequently, all the B/s turn out to be real, and (2.4) follows. 

To complete the picture we give the reciprocal statement of (2.1). Let 

Then, if P = QR, we get 

p-IA1P = ( il -il) ' 

for j = 3, • • • , r, 

where B1 is as in (2.5). 
This is, essentially, the type of reduction used by Hurwitz in [6; pll-14]. 
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PROPOSITION 2.6. If m = p2 4a+ 3 , with p an odd number, then, there exists a 
maximal E-set of real matrices of order m. 

Proof Given m we always have an E-set of real matrices, with p(m) - 1 
elements, where p(m) is the Hurwitz-Radon function ([3]). In our case, p(m) 
= 8a + 8 and, if q = 4a + 3, we have p(m) - 1 = 2q + 1, so we get a maximal 
E-set of real matrices, and (2.6) follows. 

PROPOSITION 2.7. Given A1, • • •, A2N, an E-set with 2N elements, we can 
always add to it the matrix 

to obtain an E-set with 2N + 1 members. 

Proof This proposition is easily verified and it already appears in [4] and 
[10]. 

PROPOSITION 2.8. Let A1, • • • , A 2N be an E-set of real matrices. Define 

A/= iN+1AaA4 • • -A2NAj 

Ak * = iA1A2A11 

A2N+1* = iN+IA1A2 • • -A2N-

(j = 1, 2), 

(k= 3, 4,. • ·, 2N), 

Then, the matrices A1 *, • • •, A2N+1 * are all distinct and they form an E-set. 
For this new set we have 

fYt = 0 and .Ji = 2N + 1 

fYt = 3 and .Ji = 2N - 2 

if N is even, 

if N is odd. 

Proof This proposition, due to Newman [10], is established by a direct 
verification. 

COROLLARY 2.9. Let A1, • • •A2N, A2N+1 be an E-set of real matrices and 
suppose that N is even. Then, the matrices A1 *, • • • , A 2N*, A 2N+1, where each 
Al is as in (2.8), form an E-set where fYt = 1 and .Ji= 2N. 

Proof It follows that A2N+1 anticommutes with A/, and this is enough for 
the proof. 

3. Proof of Theorem 1.6 

The proof of (1.6) is an involved four-step induction based on the auxiliary 
propositions of the preceding section. As in (1.5), let m = p2q, with p odd and 
q = 4a + b. The induction is on a and we leave the initial steps, a = 0 with 
0 ::: b ::: 3, to the end. 

In general, assuming that (1.6) is true for m = p2 4a, we will show that it is 
true for 2km = p2 4a+\ with k = 1, 2, 3, 4, and the case k = 4 completes the 
induction step. 

Let E(m, t) denote a maximal E-set of order m, where the number of real 
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matrices is YP(m, t). Given YP(m, t) = 4t + b, the "if" part of (1.6) is equivalent 
to establish the existence of E(m, t), and this will first be considered. 

Begin with m = p2 4". By the induction hypothesis, for each O :s t s 2a, we 
have E(m, t). Recall that, given an E-set of order m, proposition (2.1) allows 
us to construct a new E-set of order 2m, where the numbers of real and 
imaginary matrices are increased by one. Hence, from E(m, t) and (2.1), we 
get, first E(2m, t) and then E(4m, t). Continuing in this form, we obtain 
E(Bm, t), where the range oft is as above. Here, the missing case t = 2a + 1 is 
gotten from the Hurwitz-Radon matrices, as it is presented in (2.6). Again, 
using the matrices E(Bm, t) in (2.1), we get the E-sets E(16m, t + 1), where 
16m = p2 4 (a+n, and O :S t S 2a + 1. Relabeling with s = t + 1, this becomes 
E(16m, s), for 1 :s s :s 2(a + 1). To complete the construction for s = 0, 
consider E(16m, 2a + 2). It has 2N =Ba+ B real matrices, with N even. Then, 
from (2.8), it follows the existence of a maximal E-set, say E(16m, O) with 
92(16m, O) = 0. This completes the induction step of the "if" part of (1.6). 

Now, we will consider the "only if" part of (1.6). Given n = p2 4a+b, suppose 
the existence of maximal E-sets of order n, with a number of real matrices 
different from 4t + b. Represent anyone of these sets by E*(n, t) and by 
YP*(n, t), its number of real matrices. Then, Pit*(n, t) = 4t + k, for some O :s k 
:s 3 with k 'F b. Let q = 4a + b. Since 2q + 1 is the total number of matrices 
in E*(n, t), we have 

(3.1) 92 * (n, t) = 4t + k :s Ba + 2b + 1. 

As before, begin with m = p2 4a. Here, the induction hypothesis assures us 
that not any of the sets E*(m, t) exists. That is, since b = 0, we can not have 
Pit*(m, t) = 4t + k fork= 1, 2 or 3. 

Take 2m = p24a+i, and then, b = I. Suppose there exists E*(2m, t), with 
Pit*(2m, t) = 4t + v, for some v = 0, 2 or 3. We will show that this implies a 
contradiction. 

For shortness, write E*(n), YP*(n), etc., instead of E*(n, t), YP*(n, t), etc., 
when the value of t is understood. 

Let v = 0. From (3.1), it follows that 4t :s Ba+ 3. There are two cases to be 
considered: t = 0 and t 'F 0. If t = 0, then 92*(2m) = 0 and J1*(2m) =Ba+ 3, 
and (2.4) implies Pit*(m) =Ba+ I. If t 'F 0, then, 92*(2m) = 4t 'F 0, and from 
(3.1), we get J1*(2m) 'F 0. Then, from (2.3), it follows that YP*(m) = 4(t - 1) 
+ 3. Therefore, in both cases we have a contradiction and this excludes v = 0. 

If v = 2, (3.1) implies that 92*(2m) 'F O and J1*(2m) 'F O and, from (2.3), it 
follows that 92 * (m) = 4t + I. This is a contradiction. 

For v = 3, there are two cases: t = 2a and t 'F 2a. If t 'F 2a, then, .9t*(2m) 'F 
0 and J1*(2m) 'F 0, and (2.3), implies that YP*(m) = 4t +I.As before, this is a 
contradiction. If t = 2a, then, 9l:*(2m) =Ba+ 3 and J1*(2m) = 0. Let 2N = Ba 
+ 2. From (2.8), for Nodd, we get a set E*(2m) with 92*(2m) = 3 and J1*(2m) 
= Ba. Assuming a 'F 0, this is the above case (t 'F 2a), hence, v = 3 is also 
excluded. Therefore, we can not have E*(2m, t). 
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Now, take 4m = p2 4a+ 2, and then, b = 2. Suppose the existence of E*(4m) 
with 9l?*(4m) = 4t + v, for some v = 0, 1 or 3. Here, from (3.1), we get 4t + v 
:::: Ba + 5. From now on, the arguments that already have been used, will only 
be indicated. 

For v = 0, we have two cases: t = 0 and t =F 0. As before, using (2.3) and (2.4), 
in both cases, it follows the existence of a set E * (2m), previously excluded. 

For v = 1, we also have two cases. If t = 2a + 1, then, 9l?*(4m) =Ba+ 5 and 
Y*(4m) = 0. With 2N =Ba+ 4 and N = 4a + 2 even, use (2.7), to obtain a set 
E *(4m), with 9l?*(4m) =Ba+ 4 and Y*(4m) = 1. Then, from (2.3), get E*(2m) 
with 9l? * (2m) = 4a + 3, and this is not possible. In the other case, t =F 2a + 1, 
it follows that 9l?*(4m) =F O and Y*(4m) =F O and, with (2.3), this also is not 
possible. 

The case v = 3 implies 9l?*(4m) =F O and Y*(4m) =F 0. Again, (2.3) takes care 
of it. 

Next, for Bm = p2 4a+3 , we get b = 3. Then, assume the existence of E*(Bm) 
with 9l?*(Bm) = 4t + v, for some v = 0, 1 or 2. From (3.1), it follows 4t + v:;:; Ba 
+ 7. 

If v = 0, again we have here, the cases t = 0, t =F O and, using (2.3), (2.4), we 
dispose of them. For the values v = 1, 2, it follows that 9l?*(8m) =F O and 
.__¢* (Bm) =F O and, using (2.3), these cases are also excluded. Hence, the sets 
E * (Bm, t) do not exist. 

Finally, take 16m = p2 4<a+1>, and then, b = 0. Suppose the existence of 
E*(16m) with 9l?*(16m) = 4t + v, for some v = 1, 2 or 3. From (3.1), we have 
4t + v:;:; Ba+ 9. 

For v = 1, there are two cases: t = 2a + 2 and t =F 2a + 2. If t = 2a + 2, then 
9l?*(16m) = Ba + 9 and J1*(16m) = 0. Use (2.9), to obtain E"'(16m) with 
9l?*(16m) = 1 and .__¢*(16m) =Ba+ 3. Then, from (2.3), we get E*(Bm) with 
9l? * (Bm) = 0, but this is not possible. The case t =F 2a + 2 of v = 1, and the 
other cases v = 2, 3 are all settled with (2.3), so that the sets E*(16m) can not 
exist. This completes the induction of the "only if" part of (1.6). 

To finish the proof, we need to establish the first cases of (1.6). Explicitly, 
when a= 0 and b = 0, 1, 2, 3. Let a= 0 and b = 0. Then, m = p and we only 
have one matrix A 1 of order p, such that A/= -I. This implies that 

(detA1) 2 = (-l)P = -1. 

Hence, A 1 can not be real. On the other hand, A1 = if proves the existence of 
an E-set, with 9l? = 0 and Y = I. 

From here, the construction of the sets E(p2\ t), for k = 1, 2, 3, 4, is 
achieved, with the same arguments used for the "if" part of (1.6). 

We already proved the nonexistence of E*(p, t), whenp is an odd number. 
With the exception of E*(p2, 3), the nonexistence of all the other sets E* 

1 
(p2\ t), fork = 1, 2, 3, 4, also follows from the same arguments used for the 

i "only if" part of (1.6), hence, their proof is omitted. 
The special case appears because (2.8) can not be applied if 2N = 2. Recall 

that the existence of E*(p2, 3), where9l?*(p2) = 3 and Y*(p2) = 0, is equivalent 
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to the existence of three real matrices A1 , A2, Aa, of order p2, fulfilling 
conditions (1.4). From (2.7), we may assume that A3 = A1A 2 • 

Let R denote the real field, Rn the space of n-tuples with the usual R-vector 
space structure, and R(n) the R-algebra of real matrices of order n. Let Q be 
the quaternion algebra over R, and let {l, i, j, k} be the usual basis. Setting 

1-1, i-A1,}-A2,k-A3 

we get a map of Q into R (p2) as R-algebras. Then, through this map, RP2 

becomes a Q-module, but Rn is a Q-module if and only if 4 divides n 
[8; pl31]. Therefore, E*(p2, 3) can not exist. This ends the proof of (1.6). 

CENTIW DE INVESTIGACION DEL IPNj MEXICO 14, D. F. 

REFERENCES 

[1] J. ADEM, Algebra lineal, campos vectoriales e inmersiones, III ELAM, IMPA, Rio de Janeiro, 
1978. 

[2] J. DIEUDONNE, A problem of Hurwitz and Newman. Duke Math. J. 20(1953), 381-389. 
[3] B. ECKMANN, Gruppentheoretischer Beweis des Satzes van Hurwitz-Radon iiber die Kam­

position quadratischer Formen. Comment, Math. Helv. 15(1943), 358-366. 
[4] A. S. EDDINGTON, On sets of anticommuting matrices. J. London Math. Soc. 7(1932), 58~68. 
[5] W. EICHIJ:ORN, Funktionalgleichungeri • in Vektorraumen Kompositionsalgebren und Sys­

teme partieller Differentialgleichungen. Aequations Math. 2(1969), 287-303. 
[6] A. HURWITZ, Uber die Komposition der quadratische Formen. Math, Ann. 88(1923), 1-25. 
[7] H. KESTELMAN, An,ticommuting linear transformations. Canadian J. Math. 13(1961), 

.614-624. 
(8] T. Y. LAM, The Algebraic Theory of Quadratic Forms. Benjamin, New York, 1973. 
[9] D. E. LITTLEWOOD, Note on the anticommuting matrices of Eddington, J. London Math. 

Soc. 9(1934), 41-50. 
[10) M. H. A. NEWMAN, Note on an algebraic theorem of Eddington, J. London Math: Soc. 

7(1932), 93-99. 
[11] J. ~ADON, Li'neare Scharen orthogonaZeh Matrizen, Abh. Math. Sem. Univ. Hamburg, 

l(i922), 1-14. . 
[12] D. B. SHAPIRO, Spaces of Similarities I. The Hurwitz Problem. J. Algel:lra 46(1977), 

148-170. 




