
Boletin de la Sociedad Matematica Mexicana Vol. 37, 1992 

INVARIANTS AND COHOMOLOGY OF GROUPS 

BY ALEJANDRO ADEMt AND R. JAMES MILGRAMt 

This paper is dedicated to the menwry of Jose Adem (1921-1991) 

1. Introduction 

Let G be a finite group and p a prime number dividing its order. The ef­
fective calculation of its cohomology ring H* ( G; 1F p) becomes difficult as soon 
as the p-rank of G is larger than one. There are, however, well-known lo­
cal methods ([Ql], [Wl]) which allow the use of the cohomology rings of the 
normalizers of elementary abelian p-subgroups of G to determine the coho­
mology of G. 

These methods are quite effective, reducing the question to studying the 
cohomology rings and cohomology maps induced from a lattice of proper sub­
groups of G (usually each much smaller than G). However, the methods run 
into difficulties as soon as G normalizes one of the elementary p-subgroups. 
Thus, from a calculational point of view, extensions of the form 

1--+ V --+G--+ K--+ 1 

with V === (7L/p t are of great importance in group cohomology. In particular 
we have an induced restriction map 

H*(G;1Fp)--+H*(V; 1Fp)K 

indicating that rings of invariants play an important part in many calcula­
tions. Indeed, existing results for the symmetric groups [AMMl] and the 
general linear groups [Q2] rely heavily on determining rings of invariants. 

In this paper we will describe a cohomological decomposition for group ex­
tensions where rings of invariants play a significant role. To state it we need 
to recall a few definitions. For a finite groupK let jAp(K)I denote the geomet­
ric realization of the partially ordered set of elementary abelianp-subgroups 
of K. For any i-simplex (J"i in this K-complex, we denote its stablizer by Kai 
and its orbit representative by [(J"i]-We then have 

THEOREM (2.2). Let 

1--+H --+G--+K--+ 1 
be an extension of finite groups. Then, with 1Fp coefficients we have an isonwr­
phism 

tPartially supported by grants from the N.S.F. 
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where the [a-i] run over the simplexes of IAp(K)I/K. I 

The point of this expression is that it measures very precisely how far 
H*(G) differs fromH*(JI)K; note in particular the extreme case (IKl,P) = 1 
when H*(G) ~ H*(H) . The proof of this theorem relies on a splitting for 
group cohomology due to P. Webb [Wl] together with some techniques from 
equivariant cohomology. 

As particular examples we note that there are a number of extensions of 
the form 

(7l/2t--+G--+Am 

where n = 3 or 4 and Am is the alternating group on m letters which are 
critical in studying the cohomology of some of the sporadic groups. More 
precisely, there are representations 

An---+GL4(IF2) ~ As 

for n = 5, 6, 7 (two distinct representations of A5) which give rise to rings 
of invariants involved in the cohomology of the sporadic simple groups O'N, 
M22, M23, and McL which are critical ingredients in the determination of 
their cohomology rings ([AM2], [AM3]). Many of these examples are dis­
cussed in §4. 

After we have proved (2.2) in §2 we give a detailed computer assisted deter­
mination of the rings of invariants mentioned above. Some of the invariant 
subrings of GL4(IF2) are determined in [AMI]. Here we determine most of 
the remaining rings which play a role in the structure of the sporadic groups. 
The main result along these lines is 

THEOREM. 

(1) There are two non-conjugate copies of A5 C Ag. The ring of invariants 
for the first is given in [AM 1] and for the second its invariant sub ring 
in C = JF2[x1, ... ,x4] is IF2[v2, v3, v4, v5]( 1, b10). 

(2) CAB~ IF2[,3,,5,Ds,D12](l,,9,b15,,9b15). Here, 13 = Sq 1(a-2) where 0-2 
is the symmetric monomial inx1, ... ,x4, 15 = Sq2(n) and 19 = Sq4(,5). 

(3) cA7 ='= IF2[Ds,D12,D14,D15](l,d1s,d21,d22,d23,d24,d27,d45). 

This is a summary of the main results of§3. In all cases the subscript denotes 
the dimension of the generator and the Di are the generators for the Dickson 
algebra cGL4(IF2). 
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Remark. The ring in (1) above occurs in studying the Janko groups J2 and 
J 3. In particular, in J2, the normalizer of one of the two conjugacy classes 
of involutions has the form 21+4 

>1J A5, and the quotient semi-direct prcxluct 
(Z:/2)4 ~ .A5, is given via this action. The other invariant subrings are needed 
in studying the cohomology of the Mathieu groups M22, M23, and the group 
O'N. 

There is every indication that similar rings of invariants play an essen­
tial role in other cohomology calculations, hence it is important to develop 
systematic methods for computing them. In this regard Peter Kropholler in-
forms us that he has general results on the rings IF'2[x1, .. . x2n,]8 P21i(IF'2) and 
IF'2[x1, ... ,xn]°n(lF2). For Sp2n,(IF'2), he shows that the ring of invariants has 
the form 

which explains most of the elements in part (2) of our theorem. 
In §4 we apply (2.2) to decompose the mod(2) cohomology of certain spo­

radic simple groups explicitly exhibiting the contribution of the invariants 
discussed above. In particular we give a complete discussion of the Mathieu 
group M 11, replacing the much longer work of [BC]. We also discuss some of 
the .relations between the Mathieu group M 12 and the exceptional Chevalley 
groups G2 and G2(q). Further details will appear in [AM2], [AM3]. Unless 
otherwise indicated, 1Fp coefficients will be assumed throughout. 

This paper is dedicated to the memory of Jose Adem. He was an elegant 
mathematician whose understanding of classical questions in algebra led to 
far-reaching contributions in algebraic topology. As an individual he was an 
example of that rare combination of style and substance. To one ofus he was 
a valued friend whose support when he was just starting out- was crucially 
appreciated and whose ideas and comments were very very important in his 
early work. To the other he was a lifelong example and inspiration. 

2. Invariants from local methods 

We consider a fixed extension 

1r 

1--+H --+G --+ K--+ I 

and let p be a prime dividing the order of G. The image of the restriction 
map 

(ii})*: H*( G)-+H*(H) 

lies in the ring of invariants H* (H)K, but i* is neither injective nor sur­
jective in general. However, if (IKl,P) = 1 then using the transfer map 
tr*: H*(H)-+H*(G) together with the fact that i*tr*: H*(H)-+H*(H) is the 
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sum LkEK k* which is valid when His normal in G we see that im(i*) is ex­
actly H* ( H)K, moreover, using the general fact that tr* i*: H* ( G) ~ H* ( G) is 
just multiplication by IG:HI we have 

H*(G) ~ H*(Hf. 

The goal of this section is to see how this situation changes when Sylp (K) 'I-1 
and to develop a systematic method for evaluating this discrepancy. 

Consider the partially ordered setAp(K) ofp-elementary abelian subgroups 
of K, and letX = jAp(K)I be the geometric realization of the associated cate­
gory consistingofobjects inAp(K) and maps (proper) inclusions.Xis a finite 
cell complex with a cellular K-action induced by conjugation. An n-simplex 
er E X corresponds to a flag 

F(cr) = {0} f. (?l/p/1 s; ... s; (7l/p)in+l. 

Let Ka denote the stabilizer of F( er). Then the action of Kon Ap(K) extends 
to a simplicial action on X and the fixing subgroup of K on the simplex er is 
exactly Ka. We recall a theorem due to P. Webb [Wl] 

THEOREM (2.1). There exist projective fipK-nwdules P and Q so that 

where the [cri] range over orbit representatives in (X/K)(i)_ • 

The virtual projective module P - Q is called the Steinberg module of K at 
pas it generalizes the usual projective module arising from a Tits building 
[W2]. 

Returning to our extension let Ga = 71"-
1(Ka) ~ G. It is reasonable to 

assume that the Ga should play a part in any cohomological splitting for 
H* ( G) arising from K; however, the representation theoretic discrepancy in 
(2.1) (expressed as P - Q) gives rise to an "error term" involving invariants. 
The precise result is 

THEOREM (2.2). Let 

1---+H--+G--+K--+1 

be an extension of finite groups. Then, with IFp coefficients we have an isonwr­
phism 



INVARIANTS AND COHOMOLOGY OF GROUPS 5 

Proof. Let EG denote a free, contractible G-CW complex with mod(p) 
cellular cochain complex C*(EG). H acts freely on EG so EG/H :::::: BH. 
Also BH, in this representation, inherits a free K-action realizing BH as a 
principal K cover of BG = EG/G. Tensor formula (2.1) with C*(EG/H). 
This yields a corresponding K -isomorphism of cochain complexes, 

C*(EG/H) ® {1Fp EB ( $ 1Fp[K/K,-J) EB P} 
[ai], i odd 

~K C*(EG/H) ® { ( $ 1Fp[K/Kai) EB Q}. 
[ai], i even 

Apply the functor H*(K; - ) to this equation where we regard the tensor 
product of two IFpK-modules as a 1FpK-module via the usual rule k(a ® b) = 
k(a) ® k(b) when k EK. Note that for any subgroup£~ K we have 

H*(K; C* ® 1Fp[K/L]) ~ H*(L; C* /L). 

On the other hand we also have the following result 

LEMMA (2.3). For any subgroup L ~ K, we have 

H*(L; C*(EG/H)) ~ H*(1r- 1(L)). 

Proof of (2.3). The left hand side computes the cohomology of 

EL XL EG/H = (EL x EG/H)/L ~ (EG/H)/L ~ B7r-1(L). 

• 
At this point the only terms which remain to be understood are H*(K; C* 

(EG/H) ® P) and H*(K; C*(EG/H) ® Q). For this step we need 

LEMMA (2.4). If Pis a projective 1FpK nwdule and C* is any 1FpK cochain 
complex, then 

H*(K;C* ®P) ~ [H*(C) ®Pr. 

Proof of (2.4). There is a spectral sequence with 
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However, as P is projective we have 

HP(K;Hq(C @P)) ~ HP(K;H'l(C) @P) ~ UHQ(C) @P)K ~~;;: ~: 

Thus, the spectral sequence collapses at E2 and (2.4) follows. • 
We return to the proof of (2.2). Take (2.1), tensor with H*(H), and apply 

K-invariants to it. From the discussion above we obtain 

( $ H*(Hf(Ti) EB (H*(H) @Pf 
[ai], i odd 

( $ H*(Hf(Ti) EB (H*(H) 0 Qf, 
[ai], i even 

or, stated in virtual terms, 

When we substitute this expression (2.2) follows. • 

Remark. Instead of IAP (K) I we could have used any other K-complex for 
which (2.1) holds. These include ISp(K)I (the poset ofnon-trivialp-subgroups) 
or the Tits buildings if K is ofChevalley type, and for M22 the results of[RSY] 
give another lattice of subgroups distinct from these which also satisfy (2.1). 
See Example 4.4 for further details. 

We now give several examples where (2.2) is useful, starting with famil­
iar extensions. The following notation will be useful from here on: we set 
Vn = (7l/2t and we regard Vn as then-dimensional vector space over the 
field IF2. 

Example (2.5). The symmetric group on 4 letters, :E4, is given as the ex­
tension 

where K is the Klein group. The poset space IA2(:E3) I consists of three copies 
of ?l/2 so the orbit space consists of a single point with isotropy group ?l/2, 
and we have 

Now, H*(Vn?n = IF2[x1, ... ,xnf:;n = IF2[w1, w2, ... , Wn], where Wi denotes 
the ith symmetric power of the monomials xi, the well known symmetric al­
gebra, and 

IF2[x1, ... ,Xn]GLn(IF2) = IF2[D2n-1,D2n-2n-2, • • • ,D2n-1], 
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the well known Dickson algebra. Here the D2n_ 2i are the Dickson invariants. 
Consequently, passing to Poincare series we have 

1 1 1 1 + t + t2 + t 3 

P'E4 = (1- t2)(1- t3) + (1- t) 2 - (1- t)(l - t2) = (1- t2)(1 - t3). 

Remark. SinceH*(Ds) is detected by abelian subgroups the same is true of 
H*(~ 4) and we have that H*(~4) is Cohen-Macaulay, i.e., freely and finitely 
generated over a polynomial subalgebra. In this case the subalgebra of ele­
ments which restrict to the Dickson algebras JF 2 [D2, D3] in both non-conjugate 
copies of (7Z/2)2 C ~4· 

Example (2.6). Example (2.5) generalizes to any extension of the form 

l---+V2n,---+G---+SL2(JF2n )---+1 

by using the Tits building for SL2(lF2n). Once moreX consists only of isolated 
points all in the same orbit and stabilizer the Borel group which, in this case, 
is given as the semi-direct product 

Hence (2.2) gives 

H*(G) EB H*(V2n)B ~ H*(V2n)8L2(lF2TL) EB H*(Syl2(G)?l 2n_ 1. 

From the geometry of the constructions above it is direct to see that this 
expression is more than merely a formal isomorphism. It corresponds to an 
exact sequence 

0---+H* ( G)--+H*(V2n,)8L 2(JF 2n) EB H*(Syl2( G) )7Zf2n_ 1---+H*(V2nt--+O 

which identifies H*(G) as those elementsµ E H*(Syl2(G))!Zf~-l which sat­
isfy the condition 

Indeed, we could have stated Theorem (2.2) in terms of a split long exact 
sequence of the type above. This follows from the version of (2.1) which is 
proved in [W3]. In practice, however, we use (2.2) for Paine.are series calcula­
tions, usually preferring double coset decompositions to determine the ring 
structure of the resulting cohomology groups. 

In the special case SL 2(JF 4) ~ A 5, the invariants H*(V 4)A5 are studied in 
[AMl] as they play an important role in the calculation of H*(L3( 4)) and the 
cohomology of the sporadic simple groups J2, J3, M22, and O'N as discussed 
in the introduction. 
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Example (2. 7). There is a non-split extension of the form 

1--+(Z/2) 3----+E----+GL3(IF2)-+l 

where the action of GL3(1F2) on (Z/2) 3 is the usual one. Indeed, Alperin [A] 
has given a complete discussion of extensions of the form (Z/2r) 3 • GL3(JF2) 
where the action is the usual one when restricted to (Z/2) 3 c (Z/2r) 3, and 
has shown that there are exactly two, the first which is split and one other 
which is non-split. The group Eis the basic non-split example and is partic­
ularly interesting because Syl2(E) = Syl2(M 12), (compare (4.2)). 

Using the Tits building for GL3(IF2) with parabolics P1 == :E4, P2 == '.E4 and 
B = P1 nP2 = Ds we obtain 

H*(E) EB H*(Syl2(E)) EB H*(V3l 1 EB H*(V3l 2 

=H*(V3)°L 3(1F2 ) EBH*('n·-1(P1)) EBH*(1r-1(P2)) EBH*(V3p 8 . 

Example (2.8). Consider the group A6 s; Sp4(1F2) == :E6. The resulting 
action of A 6 on V4 allows us to define-a semi-direct product 

G = V4 >l A6 

which is a 2-local subgroup of the third Mathieu groupM 22, In this case (2.1) 
reduces modulo projectives to 

IF2 EB 1F2[A6/Ds] =A 6 1F2[A6/~1] EB 1F2[A6/Q2] 

where Q1 = Q2 = :E4 are the two distinct copies of :E4 contained in A 6 . We 
have 

H*(G) EB H*(Syl2(G)) EBH*(V4)Q 1 EBH*(V4)Q 2 

= H*(V4)A 6 EBH*(V4 )<3 Q1) EBH*(V4 )<3 Q2) EBH*(V4f 8 . 

The invariantsH*(V 4)A6 will be determined in §3. 

3. The invariant subrings for subgroups of GL4(1F2) 

The classical isomorphism of GL4(2) with As is given explicitly in [D, 
pp.290-292] by setting 

C 1 1 1) C 1 0 

D ,E3= G 1 1 i), 0 0 0 1 0 0 1 
1 0 Ei = 1 1 0 0 ' E 2 = 0 1 0 
1 0 

0 1 0 1 1 0 1 
(3.1) 

0 1 n 'E5= 0 0 1 

D · Es= 0 
1 1 

D· E4= G 1 0 1 0 0 1 
0 1 0 0 1 0 
1 0 0 0 1 1 
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verifying the relations 

Ef = Ef+ 1 = (EiEi+1)3 = (EiE_j)2 = 1, 

and setting up the correspondence 

(i,j = 1, ... , 6, j > i + 1), 

E1,..., (123), E2 ,.._, (12)(34), E3,..., (12)(45). 

If we make a change of basis 

then the first four matrices take the simpler form 

E3 ~ G ~ ~ !) , E4"' (n H). 
0 0 1 1 0 

9 

Consequently, if we set ( = ( ~ !),J= (~ t).1= (t n,weobutln 

E1 ~ ( ~ (~) , E2 ~ G n , Ea ~ ( ~ ~) , E4 ~ ( ~ ~) . 

It follows that E3E4E3 = ( ~ ~) and the three matrices (E 1, E2, E3E4E3) 

are our usual generators for SL2(IF4) = A5. Finally adding E4 gives gener­
ators for the commutator subgroup of the symplectic group Sp 4 (IF2) ~ E6, 

Sp4(lF2)' = A6-
We studied certain of these subgroups in [AMl]. In particular we studied 

the first E4 and SL2(IF 4) there. The essential step was to use cohomology 
with IF 4 as coefficient ring so that the elements of order three could be diag­
onalized. In particular the main process was as follows. Set A = (3a + (f b, 
8 =(§a+ (3b, C = (3c + (§d, V = (§c + (3d where a,b,c,d E Hom(IFi,IF2) 
are dual to e1, e2, e3, e4 respectively. Then the action of our generators above 
(or more accurately their duals) is given by 

Ei(A) = (3A, Ei(B) = (§8, Ei(C) = (§C, 
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E 2(A) = A, E2(B) = B, E2(C) =A+ C, E 2(V) = B + V, 

r*(A) = C, r*(B) = V. 

Finally, in terms of this basis the action of the new generator is given by the 
formula 

E4(A) = B, E4(B) = A. 

Incidentally, if we set E12 = ( ~ ~) then we see that with respect to the 

new basis, 

E ,.._, (E12, 0 ) 
5 I E12 , 

Note that r = E3E4E3 ,.._, (12)(46) under the correspondence with As so 
the span (E1,E2, r,E6) ~ :E5. This copy of :E5 is obtained by extending the 
action of SL2(IF4) via the Galois automorphism of IF 4. It also embeds in the 
full symplectic group Sp4(IF2), 

The :E4 subgroups of A6 

There are two non-conjugate copies of:E4 C A6, the respective normalizers 
of the two non-conjugate copies of (71../2)2 there. 

The first, generated by (E1,E2,E4) is characterized by the fact that the 
elementE1 oforder 3 has no fixed non-zero vectors in (?l/2) 4. The second is 
generated by 

E1E3E4 ,.._, (123)(465) 

E2E3EyE2E1E3E2 ,.._, (15)(24) 
,.._, (12)(45) 

For this subgroup Dim(((7l/2) 4)8) = 2, and defining new coordinates by 

the original matrices become 



INVARIANTS AND COHOMOLOGY OF GROUPS 11 

Ea,..., (!i ~ ~) = (~ ~ ~ ~) + (·~ ~ ! ~) 
1110 1111 0001 

The invariant subring for the first E4 is discussed in [AMl], see in partiru­
lar (4.10), so we don't disruss it further here. We now describe theinvariant.s 
of the second E4 = (S, T, Ea). We set Wi equal to the ith symmetric monomial 
in the variables (x1, ... ,xn), Note that, while the wi, 1 ::; i ::; 4 are not in­
variants of this :E4 action, they are invariants for the action of the subgroup 
A4, since the change of basis above shows that A4 = (S, T) acts by the usual 
permutation of coordinates. 

The following result is contained in [H]. 

LEMMA (3.2). Let An act on (xi, ... ,xn) by permuting coordinates in (he 
usual manner, then 

1F2[x1, • • •, Xn].An = 1F2[w1, • • •, Wn](l, an(n-1)/2) 

h t""' ( 2 a n-1) W ere an(n-1)/2 = L..,aE.An a X1Xr3 ... Xn-1 . 

Now we are able to state 

THEOREM (3.3). Let wa = wa + w1w2, 14 = w2(w2 + wr), 'YB = w4(w4 + 
waw1), .X5 = Sq2(wa) = w1w4 + (w2 + wy)w3, and b6 = a6 + w2( , 4 + w1 + 
w4) + w1w2w3. Finally, set b7 = w1b6 + w4w3. Then 

lF2[x1,x2,x3,x4fE4 = 1F2[w1, wa, ,4, ,s](l, .X5, b7, .X5b7) 

where the action of :E4 is determined by the matrices for S, T, Ea above. 

Proof. We begin by noting that E 3 normalizes A4 so that it acts on 

and the desired invariants are the elements in this ring which are fixed under 
Ea. We have 

LEMMA (3.4). 

E3(wi) 

E3(w2) 
E 3(w3) 

E3(w4) 

E3(a6) 

W1 

w2+wr 

wa 

W4 + W1W3 

a6 + wy( 14 + w1 + w4) + wawa. 
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Proof (3.4). Since E3 = E3 we have E3(xi) = Xj(i) + w1 for appropriate 
j(i). Consequently E3(w1) = 5w1 = w1, Similarly E3(xixj) = XaXb + (xa + 
xb)w1 + wy, and summing over all pairs i,j we get all pairs a,b. Similarly 
E3(w3) = w3 + wf, and the above result follows for w4. 

The result for a5 was done using a computer. • 

COROLLARY (3.5). We have that 

(E3 + l)a 6 + w2(, 4 + w1 + w4 + w1w3) = wi. 

• 
We now return to the proof of (3.3). 
We can writ~ IF2[x1, ... ,x4]A4 = IF2[w1, ... , w4](l, b5) and 

1F2[w1, w2, w3, w4] = 1F2[w1, w2, w3, w4] = 1F2[w1, w3, ,4, ,s](l, w2, w4, w2w4). 

We set S = 1F2[w1, w3, 14, ,s] and 

which is closed under the action of E3. There is an exact sequence of E 3 
modules 

S---+S1---+S{w2} EB S{w4}, 

which leads to the long exact sequence 

S-+Sf 3-S{w2} EB S{w4} ~ H 1(Z/2;S) = S-H1(7l/2;S1)---+ · · ·. 

Clearly «S({w2}) = wy while «S({w4}) = w1w3 so Ker(«S) = S(A5). In the H 1 

part of this exact sequence we n9te for future use that the exact sequence 
becomes 

0--+S/(wI, w1w3)-H 1(7l/2; S1)---+SA 5---+0. 

Next, set S2 = S(l, w2, w4, w2w4) = 1F2[w1, w2, w3, w4]. We have an exact 
sequence 

S1---+S2---+S{w2w4} 

which gives us the long exact sequence 

E E 5 1 
S 1

3 ---+S 2
3 ---+S{w2w4}---+H (Z/2;S1)---+·· ·. 

Moreover, an easy check gives that «S({w2w4}) = w1A5, so 8 is an injection 

and sf 3 is the entire invariant subring. This also gives us H 1(7l/2; S2). 
Finally, we add b5. We have the exa~sequence 
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and passing to cohomology we get the long exact sequence 

S:3 -S2(1, bst 3-S: 3 {bs} ~ H1(71../2; S2)- · · ·. 

Here the corollary above shows that o( {b6 }) = wi, and our calculation of 

H 1(S 2; 71../2) shows that Ker(o) = s:3 w1 {bs}- But the class w1bs + w4w3 is 
an actual E3-invariant, so it becomes b7 and we have proved the result. 11 

The two A5's 

There are two copies of A5 in A6- The first, given as (E1, E2, E3E4E3), is 
discussed in [AMl] and its invariant subring is determined there. The other 
is studied as follows. First, from the Atlas, [CJ, it is direct to check that 
there are only two non-conjugate copies of A5 c As, and consequently the 
second group may be realized from the usual action of A5 on F2[x1, ... ,x5] 
by projection onto the ~5 invariant subring generated by the four elements 
r1 = x1 + x2, r2 = x1 + x3, r3 = x1 + x4, and r4 = x1 + x5. The remaining 
element in this basis for (x1, ... ,x5) isx1 +x2+x3+x4+x5 = w1, and rewriting 

lF2[x1, ... ,x5]A5 = F2[w1] ® F2h, ... 'r4]A5. 

Consequently, we can apply Hewett's result so 

F2h, ... , q]A 5 :::=:: F2[v2, v3, v4, v5](l, b10) 

and arguing similarly, 

F2[r1, ... , r4]E5 :::=:: F2[v2, v3, v4, v5] 

where we can easily determine the explicit forms of the vi. 

The As invariant subring 

The Dickson element Ds is given as follows in terms of the above generators 
forF 2[x1, ... ,x 4]E4. 

D8 = , 8 +,1+w1+wjwi. 

Also, the Dickson element D12 = Sq4(Ds) has the following representation 

r12 D12 = (Ds+(w1w3+,4+w1)2)(,4+w1w3+w1)+(w1A5+wh4+wi)2. 

Finally, there is the relation 

r10 A~ = wjw3A5 + wjDs + wi(w1 + 14) + ,1wj + wt 0
. 

LEMMA (3.6). The c"lass w3 satisfies Ei(w3) = w3 so w3 E F2[x1, ... ,x4]As. 

Also, w3, Sq2 (w3) = A5, Ds, and D12 are transcendentally independent so 
F2[x1, ... ,x4]As contains the polynomial algebra 
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Proof. w3 = S(xyx2) gives a representation of w3 as a symmetric sum. 
Now, Ei is determined by the formula 

xi 1-+ (x2 + x4) 

x2 I-+ (x3 + x4) 

x3 1-+ (xi+ x4) 

x4 1-+ (xi+ x2 + x3) 

We can write S(xyx2) = xy(x2 + x3 + x4) + xi(x2 + x3 + x4)2 + x~(x3 + x4) + 
x2(x3 + x4)2 + x~x4 + x3xl Consequently 

Ei(w3) = (x2 + x4)2x2 + (x2 + x4 )x~ 

+(x3 + x4)2(x2 + x3 + x4) + (x3 + x4)(x~ + x§ + x~) 

+(xi+ x4)2(xi + x2 + x3) + (xi + x4)(xy + x~ + x~), 

and one sees directly that this is again S(xyx2), The transcendental indepen­
dence of the generators above is evident by inspection. • 

COROLLARY (3.7). The 9 dimensional class ,\g = Sq4 (,\ 5 ) is also invariant 
under A6. 

The following result is our main technique in determining IF 2 [xi, ... , x4] As 
from IF2[xi, ... ,x4]E4. 

LEMMA (3.8). There exists an explicit projection operator 

e: lF2[xi, ... ,x4]~4-+IF2[xi, ... ,x 4]As, 

i.e., e2 = id restricted to the A6 invariant subring, and im(e) C IF2[xi, ... , 
x4]A6_ 

Proof. We write A6 = U}5 vi:E4 for an explicit coset decomposition of A 6. 
Then we set 

15 

e= Lvi. 
1 

Clearly, if a E IF2[x1, ... ,x4]As we have e(a) = 15a = a, while for a E 
IF2[x1, ... ,x4]E4 and g E A6 we have gvi = Vg(i)si with si E :E4 so gvi(a) = 
v g( i) (a) and g ( e( a)) = e( a). • 

Remark. The situation in (3.8) occurs for any subgroup H C A 6 , as long 
as H contains a Sylow 2-subgroup of A 6 . 

Using (3.8) we obtain 

THEOREM (3.9). The ring of invariants IF2[x1, ... ,x4]As is 
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where b 15 = e( ,zb1 ). 

Proof. The· major step in the proof is to reduce the determination of the 
A 6 invariants to a finite calculation. This is a direct consequence of 

LEMMA (3.10). 1F2[x1, ... ,x4]E4 is freely generated over the AG-invariant 
polynomial subring, 

on the 60 generators 

Proof of (3.10). We have that the Poincare series for the free B-module on 
60 generators having the dimensions of the generators above is 

( 1 + x 7) ( 1 + x4 + x 8) ( 1 - x 10) ( 1 + x5) ( 1 + x 7) 

. (1-x)(l-x3)(1-x5)(1-x 8)(1-x 12) - (1-x)(l-x3)(1-x 4)(1-xB) 

which is the Poincare series for IF2[x1, ... ,x4]E4_ Hence, ifwe can show that. 
the B-submodule of 1F2[x1, ... , x4F:;4 generated by the 60 elements above is 
the entire invariant ring the lemma will follow. 

Let A = 1F2[w1, w3, 14,Ds](l, .-\5) C IF2[x1, ... ,x4]E4. We now wish to deter­
mine Torg(A, JF2) which determines a generating set for A over B. 

Let R = IF2[w1, w3, 14, .-\5, Ds,D12] be the polynomial algebra on (formal) 
generators. There is an obvious surjective map R-+A and the kernel is the 
ideal generated by the two elements 

R12 = D12+(Ds+(w1w3+ 14+w1)2)(,4+w3w1 +w1)+(w1.-\5+wI,4+w~)2, 

and· 
R 10 == .-\~ + wyw 3.-\5 + wl 0 + (wi + , 4)w~ + (D8 + ,1)wI, 

Consequently we obtain a resolution of A over n, 

(3.11) 
8 8 

O.....:.......+Rs22 --+ R(rio, r12) --+ R--+A--+0 

where 8(r10) = Rio, 8(r12) = R12, and 8(s22) = R12r10 + R1or12· 
Since R is free over B the resolution (3.U) is also a resolution of A over B. 

Moreover 
R/ B = IF2[w1, ,4] 

so the complex for computing Tor~(A, IF2) becomes 

8 8 B 
1F2[w1, ,4]s22--+ 1F2[w1, ,4](r10, r12) --+ IF2[w1, ,4]--+Tor 0 (A, IF2)--+O. 
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Here 8(r10) = w}0 + ,rwr and 8(r12) = (,4 + w1)3 + whf Now a direct 
calculation gives that Torg(A, IF2) has 30 generators, 

and it follows that IF2[x1, ... ,x4]1:4 = A(l,b6) is free over Bon the sixty gen­
erators asserted in (3.10). • 

The proof of (3.9) is now a direct computer computation. The projection 
operator e is evaluated, in turn, on each of the sixty generators above. Note 
that B and these images certainly generate IF 2 [x 1, ... , x 4].A6, so the final deter­
mination of the ring became simply a matter of identifying the independent 
generators among these images. Again this was done using the computer. • 

The A7 invariant subring 

The argument for A7 is similar to that for A6· We start with the Dickson al­
gebra V = IF2[Ds,D12,D14,D15] = IF2(x1, ... ,x4]GL2(4) and show to begin that 
IF2[x1, ... ,x4].A6 is freely and finitely generated over it on 
56 generators. Then we use a projector similar to the e of the previous sec­
tion, 

on each of the 56 generators above to obtain a generating set for IF 4 [x 1, ... , 
x4].A1. 

LEMMA (3.12). There exists an explicit projection operator 

f: IF2[x1, ... ,x4].A6---+IF2[x1, ... ,x4].A1, 

i.e., { 2 = id when restricted to the A 7 invariant subring and im(f) c 
IF2(x1, ... ,x 4].A1. 

The proof is exactly like that of (3.8). Once more IA1 : A 6 1 = 7 is odd and 
so Ei wi = f where the wi are a set of coset generators for A7 over A 6 . 

THEOREM (3.13). IF2(x1, ... ,x4].A1 is freely and finitely generated over the 
Dickson algebra Von eight generators, { 1 }, f ( w~.\9) in dimension 18, f ( w~>i5) 
in dimension 20, f(w~) in dimension 21, f(w~>i9) in dimension 24, f(w~,\~) 
in dimension 25, f(wg.-\9) in dimension 27, and f(w~,\9.\15) in dimension 45. 
In particular it has Poincare series 

1 +xlB +x20 +x21 +x24 +x25 +x27 +x45 

(1 - x8)(1 - x12)(1 - x14)(1 - x15) 
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The proof follows that of the previous theorem on the A 6 invariant subring 
quite closely. We begin with 

LEMMA (3.14). The subring oflF'2[x1, ... ,x4]A6 given as B = lF'2[w3, ,\5,Dg, 
D 12] ( 1, ,\9) cont;ains the Dickson algebra V and is freely and finitely generated 
over V on the 28 generaf;ors 

Consequently lF2[x1, ... ,x4]A6 is free and finitely generated over Von the 56 
generators consisting of the 28 generat;ors above and their products with .:\ 15. 

Proof of (3.14). One checks directly that we have 

D 14 ,\5,\9 + w~Ds + W~A5, 

D15 ,\~ + w~,\ 9 + w~. 

This shows that V c B. 
Let C = lF'2[w3,,\5,.:\9,Ds,D12,D14,D15] be the polynomial algebra on 7 

generators in the stated dimensions. There is a surjection C--+B taking the 
generators to their images with the same names. To determine a resolution 
of B over C note the three relations 

R1s= ,\~ + Dg,\~ + wi + ,\~w3 + A9W~ + D12w~ 

R15: D15 + w~.:\9 + ,\~ + w~ 
R 14 : D 14 + ,\6,\9 + w~D8 + wi,\5. 

We clearly obtain a resolution of B over C as 

where 8(s14) = R14, 8(s15) = R15, 8(s1s) = R1s, and so on. Consequently, 
since C is free over the Dickson algebra V we obtain a resolution of B over V 
as follows. Set 

£ = lF'2[w3, ,\5, ,\9] CC, 

then a chain complex for determining Tor~(B, lF'2) is given as 
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where 8(s14) = .-\5.-\9 + wg.-\5, 8(s15) = wi.-\9 + .,\~ + w~, and 8(s1s) ~ .,\~ + 
.-\~w3 + w3.-\9 + w~, and we have 

IF2[wa, .-\5, .-\9)/(.-\5.-\9 + w3.-\5, w32
.-\9 

+ .-\~+wt.-\§ + .-\~wa + wi.-\9 + w~)-

Within the ideal which is being factored out note the following. First the 
relation for A§ has the form A§+w3r15 where r15 is the second relation above. 
Thus A§ E the relation set. Similarly, .-\5r15 = .,\! + wir14 so .,\! is in the 

relation set. Also, .-\9r14 = w3.-\5.-\9 + .-\5.-\§ so w3.,\5.-\9 is in the relation set, 
and expanding out .-\5r1s gives that w~.-\5 = 0. Also, note that r14 implies that 

w3.,\~ = .,\~.-\9 and r15 implies that w~ + wi.-\9 + .-\~. Consequently 

w3r15 = w~.-\9 + .-\~.-\9 + wg = (wi.-\9 + .-\~).-\9 + .-\~.-\9 + wg = wg 

and wi is in the relation set. Th us, Tor~ ( B, IF 2) can be no larger than the set 
asserted in (3.14). 

We now show that it also cannot be smaller. Note that the Poincare series 
for the free module over V on generators in the stated dimensions above is 

1-x24 (l + x9) + 1-x 18 (x5 + xlO) 
1-x3 1-x3 

( 1 - x8)(1 - x 12)(1 - x14)(1 - x15) 

but this is 

(1 + x9)(1- x 14)(1 + x 5 + x 10
) 1 + x 9 

(1-x3)( 1-x8)(1-x12)(1-x14)(1-x15) - (1-x3)(1-x5)(1-x8)(1-x12) 

and (3.14) follows. • 
The next step in the proof is contained in 

LEMMA (3.15). IF2[x1, ... ,x4]A1 is freely and finitely generated over Von 
eight generators. 

Proof of (3.15). An easy induction using (3.14) and the projector f shows 
that the ring of invariants IF2[x1, ... ,x 4JA1 is freely and finitely generated 
over 'D. It remains to show that the number of generators is eight. To see this 
we pass to quotient fields. We have that the degree of IF2(x1, ... ,x 4)A1 over 
IF2(x1, ... ,x4)GL4(2) is eight by the fundamental theorem of Galois theory. On 
the other hand IF2[x1, ... ,x4]GL4(2) = V and thus QV = IF2(x1, ... ,x4)GL4(2) 
so 

Q(IF2[x1, ... ,x4]A7 ) = QV(w1, ... , wg) 

where w1, ... , ws are the eight generators ofIF2[x1, ... ,x4]A1 over V. • 
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For the final step the operator f was evaluated on the 28 generators in the 
first lemma above using a computer, and image classes in dimensions 18, 20, 
21, 24, 25, and 27 were found. The resulting table is given as follows where 
Sx1x~4 denotes the symmetric sum 

The class f(wl,,9): Sx 8x~ 2x 2 + Sx 9x~ 2x 2 + Sx 9x 6x 3 + Sx 8x~ 4x 2 
1 34 1 34 123 1 34 

+ Sx
9
x~ 4 + Sx

10
x~ 1x 1 + Sx

10
x¥

2
x

2 + Sx 10x~ 2 
1 3 1 34 1 34 1 3 

+ Sx 10x¥ 3x 1 + Sx 9x 6x 2x 1 + Sx 11x~ 2x 1 + Sx 8x~ 3x 3 
1 3 4 1 2 3 4 1 3 4 1 3 4 

+ Sx 10x~ 3 + Sx
12

x¥ 2 + Sx 9x¥ 3x 2 + Sx 8x¼X2x 1 
1 3 1 3 1 34 1 34 

+ sx12X¥1Xl + sx12x2x2x2 + Sx9x~4xl 1 3 4 1 2 3 4 1 3 4 

The class f(whs): Sx12X¥3Xl + SxBX~4X2 + Sx10X~2 + Sx12X4X2X2 1 34 1 34 1 3 1234 

+ Sx 9x 6x 4x 1 + Sx 8x~ 3x 1 + Sx 9x~ 3 + Sx 10x¥ 4x 2 
1 2 3 4 1 3 4 1 3 1 3 4 

+ Sx
12

x~
2 + Sx 8x~ 5x 2 + Sx 12x~ 3 + Sx 9x~ 4x 2 

1 3 1 3 4 1 3 1 3 4 

+ Sx
10

x~ 1x 1 + Sx
13

x¥
2
x

1 + Sx
12

x~
1
x

1 + Sx
8
x~ 4x 1 

1 34 1 34 1 34 1 34 

+ Sx 9x 6x 5 + Sx 9x¥ 4x 3 
1 2 3 1 3 4 

The class f(w~): Sxl2X6X3 + Sxl0X~5 + Sxl4X4X2Xl + Sxl2X¥3X2 123 1 3 1234 1 34 

+ Sx 8x~ 5x 2 + Sx
10

x~ 4x 2 + Sx 8x~
4
x

4 + Sx
12

x~ 4 
1 3 4 1 3 4 1 3 4 1 3 

+ Sx 8x~ 6x 1 + Sx 9x 8x 2x 2 + Sx 8x 1x 4x 2 + Sx 10x~ 2x 1 
1 3 4 1 2 3 4 1 2 3 4 1 3 4 

+ Sx 9x¥ 4x 4 + Sx 10x4x 4x 3 + Sx 12x~ 2x 2 + Sx 8x~ 3x 2 
1 34 1234 1 34 1 34 

+ Sx10X6X4Xl + Sxl2X¥4Xl + Sx9x~4 + SxBx~4xl 1 2 3 4 1 3 4 1 3 1· 3 4 

+ Sx 12x 6x 2x 1 + Sx 10x~ 3 
1 2 3 4 1 3 

The class f(whg): Sx 16x¥ 2x 2 + Sx 10x~ 4x 2 + Sx 10x~ 5x 1 + Sx 16x 5x 3 
1 34 1 34 1 34 123 

+ Sx 12x~ 3x 1 + Sx 16x~ 2 + Sx 10x 9x 5 + Sx 9x~ 5x 2 
1 34 1 3 123 1 34 

+ Sx 8x 8x 6x 2 + Sx 11x~ 4x 1 + Sx 12x 10x 2 + Sx 12x~ 2x 2 
1 2 3 4 1 3 4 1 2 3 1 3 4 

+ Sx16x~lxl + Sx13x~2xl + Sx12x~3 + Sx16X~3Xl 1 34 1 34 1 3 1 34 

+ Sx 17x¥ 2x 1 + Sx 9x~ 4x 2 + Sx 8x~ 5x 3 + Sx
12

x
10x 1

x
1 

1 34 1 34 1 34 12 34 

The class f(whg): Sx 8x~ 5x 4 + Sx 18x¥ 2x 1 + Sx 16x¥ 4x 1 + Sx 9x
8

x
6
x 2 

1 3 4 1 3 4 1 3 4 1 2 3 4 

+ Sx12x10x3 + Sxl6x~4 + Sx10x~6 + Sx16x~2x2 12 3 1 3 1 3 1 34 

+ Sx} 2x~Ox§x} + Sx}2x~§ + Sx}
0
x~1x~ + Sx}

4
x~jx} 
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+ Sxix~~xl + Sxl0x~~x} + Sxl0x~Oxjx} + Sxl6x~~x} 
+ Sxl64xix~ + SxPx~~x~ + Sx1x~jx1 + SxPx~ix~ 
+ Sxl6x~~ + SxPx~jxl 

The class f(wg,g): Sxl3x~jx~ + Sx}6x~jx~ + Sx}6x~~ + Sx}4x~jx¼ 
+ Sx}6x~jxl + Sx}0x~~l + Sx}0x~ix~ + SxYx~gxl 
+ SxPx~~xl + Sx}6x~jx~ + Sxix~~l + SxPx~2x~xl 
+ Sxix~x~x~ + Sxl2x~Ox~ + Sxix~~x~ + Sxl0x~~ 
+ Sx}0x~~x1 + Sx}6x~~ + Sx}2x~x~x~ + Sx}2x~3 
+ SxI0x~~xl 

These classes are easily checked and seen to be independent over V. Thus 
these seven classes, together with {l} and one other class freely generate the 
A 7 invariant sub ring over V. To find the last class note that the numerator in 
the Poincare series for a Cohen-Macaulay ring satisfies a symmetry condition 
of the form, the coefficient of xn is equal to the coefficient of x!,-n for some 
fixed l. Here, the only possibility for l is 45, and the result follows. • 

4. The cohomology of some sporadic simple groups 

In this section we will provide explicit applications of our invariant cal­
culations to determine the mod(2) cohomology of certain important simple 
groups. We begin with a "small" group. 

Example (4.1). Set G = M 11, the first Mathieu group having order 11 x 

10 x 9 x 8 = 7920 = 24 32 5 11. M 11 has 2-rank two with one conjugacy class 
of groups ('ll/2) 2 and one conjugacy class of involutions. From the Atlas, [C], 
N(2A) = 2-:E4 = GL2(1F3), and we can also check thatN(('ll/2) 2) = :E4. Thus 
the quotientA2(M11)/M11 has the form 

:E4 GL2(1F3) 

Ds 

Apply (2.1) to obtain the formula 

and substitute for H* (:E4) using the formula in (2.5) to get 

H*(M11) €B H*(V2)'lll 2 ~ H*(GL2(3)) €B H*(V2)°L2(1F'2). 
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From Quillen's results, [Q2], the Poincare series for H*(GL2(1F3)) is 

( 1 + t) ( 1 + t3) 1 + t + t2 + t 3 + t4 + t5 

(1 - t2)(1 - t4) - (1 - t3)(1 - t4) 

and so the Poincare series for M 11 is (as first computed in [We 1], compare 
[BC]) 

(1 + t + t2 + t 3 + t4 + t5 ) + (1 + t2) - (1 + t2)(1 + t + t 3) _ 1 + t 5 

(l- t3)(1 - t4) - (1 - t3)(1 - t4). 

The group GL2(1F3) contains a Sylow 2-subgroup of M 11 and has its mod(2) 
cohomology detected on its elementary 2-subgroups. Consequently the same 

is true for M 11 · It follows that 

H*(M 11; 1F2) ~ 1F2[x1, x2J°L2(1F2) = 1F2[D2, D3), 

and since there is only one element in each of the dimensions 3, 4, and 5 
in this ring we have an independent proof of the result that H*(M11) === 

1F2(D3, D~](l, D2D3). In particular note that H*(M 11) is Cohen-Macaulay. 

Example (4.2). We now consider the second Mathieu group M12 of order 
95040 = 26 33 5 11. Its poset space is much more complex since it has two 
distinct conjugacy classes of involutions as well as three distinct conjugacy 
classes of (7l/2) 3 's and four conjugacy classes of (Z/2) 2. For the details of its 
structure see [AMM2]. In particular, from [AMM2] we have that the Poincare 

series for H*(M12;1F2) is 

1 + t2 + 3t3 +t 4 +3t 5+4t 6 -t-2t7 +4t 8+3t 9+t 10+3t 11+t 12+t 14 

PM12(t) = (1 - t4)(1 - t6)(1 - t 7) 

and, in fact, H*(M 12; 'll/2) is Cohen-Macaulay over the polynomial subring 

1F2[D4,D5,D7]. Since H*(BG2;1F2) === 1F2[D4,D5,D7] as well, this gives the 
indication of some connections between M 12 and the exceptional Lie group 

G2. Of course M 12 rt G2 so the connection is not nearly as simple as group 
inclusion. However, in M 12 there are two maximal subgroups of order 192. 
The first is the holomorph of the quaternion group Qs which we write W, 
and the second is a split extension 

(Z/4) 2 
>3 (Z/2 x ~3) 

where the 7l/2 acts to invert elements in (Z/4) 2. But W' is also seen to be 
the extension of the elements of order 4 in the usual torus of G2( q) for q === 

3, 5 mod (8) by the Weyl group of G2. These groups both contain Syl2(M 12) 
so there is a configuration 
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w W' 

contained in M l2· In [AMM2] it is shown that this configuration completely 
determines H*(M 12; lF2) as the intersection in H*(Syl2(M 12)) of the restric­
tion images of H*(W) and H*(W'). On the other hand, recalling the group 

E discussed in 2.7 and the fact that W === 1r-
1(P1), W' === 1r- 1(P2), we have 

a very similar configuration in E. However, the two configurations are not 
isomorphic and here the deviation between the cohomology of E and that of 
M 12 is explained by (2.2). Indeed, applying (2.2) we have 

On the other hand, using [M] we can give an independent evaluation of H* ( E) 
using the fact that E appears as the normalizer of one of the two (Z/2) 3 tori 
in G2(1Fq) for q === 5 mod (8), [FM]. In particular the result is 

q(t) 

whereq(t) = l+x2+&:3+2x4+4x5+5x6+4.x7 +5x8+4x9+2x10+3xll+x12+ 

x 14. Note that Eis also a subgroup of the compact 14 dimensional Lie group 

G2 and q(t) is the Poincare series of the compact 14 dimensional manifold 
G/E, [M]. It follows that the error term (H*(V3) ® St(GL3(lF2)))°La(lF 2) has 
Poincare series 

t4 + t5 + t6 + 2t7 + tB + t9 + tlO 

( 1 - t 4) ( 1 - t6) ( 1 - t 7) 

a result which is useful for understanding the group O' N. 

Example (4.4). The O'Nan group O'N has order 460,815,505,920 = 29 34 

5 73 11 19 31, and in [AM2] we determine its poset space, .obtaining the fol­
lowing picture. 
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4-L3(4): 21 

(3 2 
• 4 X 22 )2 

(34 · 4 x A4) · 2 

(4 x 2 x 2) · S4 

From this picture some easy cancellations give 

and using (2.2) this can be reduced to 

H*(O'N) EB H*(S)7lf 2 e:E H*(Sl3 EB (H*(V3)@ St))GL3(]F'2) 

EB H*(7l/4 · SL3(lF4) ><1 7l/2) 

23 

where S e:: (Z/4) 3 • (7l/2)2. The terms involving S are reasonably direct to 
evaluate while the term involving the Steinberg module is discussed in (4.2). 
The final term is essentially determined in [AMI]. The A5 invariants dis­
cussed in §3 play a key part in the work there. 

Example (4.5). For the third Mathieu groupM22 we use a sporadic geome­
try described in [RSY] which also satisfies the hypotheses necessary for (2.1) 

to remain valid. The associated complex has the form 
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We apply (2.1), (2.2), to this picture and, after some cancellation we have 

H*(V4 >-1 ~4) EB H*(V4 >-1 ~5) 

(H*(V 3) ® St)°La(IF2) EB (H*(V 4) ® St).A6 . 

From this, the results in [AM3], and the discussion of invariants in §3 we 
obtain the Poincare series for M 22. The formula is very messy and not too 
illuminating, so we defer details to a further paper. 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF WISCONSIN 

MADISON, WISC., 53076 
ADEM@MATII.WISC.EDU 

DEPARTMENT OF APPLIED HOMOTOPY 

STANFORD UNIVERSITY 

STANFORD CALIF., 94305 
MILGRAM@GAUSS.STANFORD.EDU 

REFERENCES 

[AMl] A ADEM, R.J. MILGRAM, A5-invariants, thecohomologyofL3(4) and related extensions, 
Proc. London Math Soc., (3) 66 (1993), 187-224. · 

[AM2] --,--, The Subgroup Structure and Mod 2 Cohomology ofO'Nan's Sporadic 
Simple Group, (preprint 1994). 

[AM3] --,--, The geometry and cohomology of the Mathieu group M 22· (To appear in 
Topology). 

[AMMl] --, J. MAGINNIS, R.J. MILGRAM, Symmetric invariants and cohomology of groups, 
Math. Ann., 287 (1990), 391-410. 

[AMM2] --,--,--, The geometry and cohomology of the Mathieu group M12, J. 
Algebra, 139 (1991), 90-133. 

[A] J. ALPERIN, Sylow 2-subgroups of2-rank three, Gainesville Conference on Finite Groups, 
North-Holland American Elsevier, NY 1973 pp. 3-5. 

[BC] D. BENSON, J. CARLSON, Diagrammatic methods for modular representations and coho­
nwlogy, Comm: Alg., 15 (1987), 53-121. 

[C] J.H. CONWAY, RT. CURTIS, S.P. NORTON, RA. PARKER, R.A WILSON, Atlas of Finite Groups, 
Clarendon Press, Oxford, 1985. 

[D] L.E. DICKSON Linear Groups, Dover Puhl. New York, 1958. 
[FM] P. FONG, R.J. MILGRAM, On the geometry and cohomology of the simple groups G2(q) and 

3D4(q): I, Preprint, Stanford University, 1990. 
[H] T. HEWETT, Thesis, Stanford University, 1991. 
[M] R.J. MILGRAM, On the geometry and cohomology of the simple groups G2(q) and 3 D 4(q): 

II, Preprint, Stanford University, 1990. 



INVARIANTS AND COHOMOLOGY OF GROUPS 25 

[Ql] D. QmLLEN, The spectrum ofan equivariantcohomology ring I, Ann. of Math, 94 {1971), 
549-572. 

[Q2] --, On the cohomology and K-theory of the generol linear groups over a finite field, 
Ann. of Math., 96 (1972), 552-586. 

[RSY] A RYBA, S. SMITH, S. YosHIARA, Some projective modules determined by sporadic geome­
tries, J.Algebra, 129 (1990), 279-311. 

[Wl] P. WEBB, A local method in group cohomology, Comment. Math. Helv., 62 (1987), 137-
167. 

[W2] --, Subgroup complexes, Proc. Sympos. Pure Math., AMS 47 (1987). 
[W3] --, A split exact sequence of Mackey functors, Comment. Math. Helv., 66 (1991), 

34-69. 




