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CALCULATING THE GENUS OF CERTAIN NILPOTENT GROUPS 

BY PETER HILTON AND CHRISTOPHER SCHUCK 

1. Introduction 

Let Jlo be the class of finitely generated, but not finite, nilpotent groups N 
with finite commutator subgroup [N, NJ. Then for any Nin Jlo the (Mislin) 
genus 9(N) (see [M, HM]) has the structure of a finite abelian group. This 
genus-group was calculated in [CH] in the case that N belongs to a certain 
subclass J/1 of Jlo. 

Thus consider the short exact sequence (valid for any nilpotent group N) 

(1.1) TN>-+N~FN 

where TN is the torsion subgroup of N, and FN is the torsionfree quotient. 
Then N E }10 if and only if TN is finite and FN is free abelian of finite rank. 
We say that N E JII it; additionally, 

(a) TN is commutative; 
(b) (1.1) splits on the right, so that N is the semidirect product for an action 

w : FN -+ Aut TN, of FN on TN; 
(c) the action w satisfies w(FN) s;;; Z(AutTN), where Z is the center. 
Note that, in the presence of (a), (c) is equivalent to the condition that, for 

each e E FN, there exists an integer u, such that e.a = ua for all a E TN 
(written additively). · 

Now let t be the height of kerw in FN; here the height of a (non-trivial) 
subgroup R of a free abelian group Fis the largest positive integer h such 
that Rs;;; hF. Then the authors prove in [CH] 

THEOREM (1.l). 9(N) ~ (Z ft)• /{±1} if NE JII, 

Let Nk be the kth direct power of N, k ~ 2. There is then a surjective 
homomorphism 

P: 9(N)-+ 9(Nk), 

given by p(M) = M x Nk-I and the authors also prove in [CH] 

THEOREM (1.2). Let TN be a cyclic p-group, for some prime p, and let FN be 
cyclic. Then p is an isomorphism. 

Our object in this paper is to calculate 9(Nk) for any NE JII and any k ~ 2. 
We know, by the principal result of [HS], that 9(N) = 0 if FN is not cyclic, so 
that 9 ( Nk) = O under the same hypothesis, so that we may assume FN cyclic. 
To state our result, let 

(1.2) exp TN= n = pr 1 pf:.i • · · P';:", PI < P2 < · · · < P>., mi ~ 1. 

We say n is of Type 1 if PI = 2, mI = 1; otherwise it is of Type 2. It is known 
that t must have the form 

(1.3) t = Pi1 P;:.i ···p~", 0 $ li < ffli, i = 1,2, ... ,,\. 
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Now we may ignore the case that n is of Type 1 with >. = 1 since then t = 1 
and ,9(N) = .9(Nk) = 0. Thus the following theorem constitutes a complete 
statement of our result, generalizing Theorem 1.2; but note that we place no 
restriction on the structure of the finite abelian group TN. In stating our 
theorem, we identify ,9(N) with (Z/t)* /{±1}, according to Theorem 1.1. We 
repeat that, to avoid triviality, we assume FN cyclic. 

THEOREM (1.3). For any k 2 2, we obtain ,9(Nk) from .9(N) by factoring out 
those residues m mod t such that (see (1.3)) 

(1.4) m = S'i mod p;;, e-; = ±1, i = 1, 2, . .. , >.. 

Thus ,9(Nk) = ,9(N)/ H, where His an e/,ementary ahelian 2-group, and 

k H _ { >. - 2, if n is of Type 1; 
ran - ' 'f . fT 2 " - 1, i n is o -ype . 

It is not difficult to prove that if N E J/1 and k 2 2, then Nk E J/1 if 
and only if N is abelian. The condition which fails is, of course, condition 
(c). Thus we see how vital condition (c) is to the validity of Theorem 1.1; for 
clearly t(Nk) = t(N). 

In Section 2, we establish, or recall, some preliminary results; and in Sec­
tion 3 we prove Theorem 1.3. In Section 4 we give a typical, illustrative ex­
ample. The content of this paper forms part of the Ph.D. dissertation of the 
second-named author at the State University of New York at Binghamton, 
written under the direction of the first-named author. 

2. Preliminaries 

The key sequence for calculating .9(N), for any NE J/0 , is (see [HM]) 

(2.1) T-AutN L (Z /e)* /{±l}---9(N). 

Here Tis the set of prime divisors of n = exp TN, and a T-automorphism <p: 
N -+ N is an endomorphism such that, localizing at T, 'PT is an automorphism 
of NT. We refer to [CH] for the definition of e, since it plays a minor role in our 
argument, but we will explain how (J acts. If d = exp TZN, then dZN is a free 
abelian group which is called the free center of N. It is shown in [M, HM] that 
any T-automorphism <p sends FZN to itsel~ so we may associate with <p the 
integer det <p IFZN. Then (J ( <p) is the residue class, modulo ±1, of this integer. 
We are now ready for our first lemma, valid for any N in Jlo. 

LEMMA (2.1). Let <p : N-+ N be an endomorphism. Then <p induces t/i : 
FN-+ FN (see (1.1)). Moreover, if rp(FZN) 5;;; FZN, then det(rplFZN) = dett/i. 

Proof. A famous theorem of I. Schur asserts that, if N is a group such 
that N/ZN is finite, then [N,N] is finite. It is not difficult to prove that the 
converse holds if N is finitely generated, nilpotent. Thus if N E J/0 then N / ZN 
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is finite, and hence N / FZN is finite. It follows that r : N--++FN maps FZN 
onto a subgroup 1r(FZN) of FN of maximal rank. Thus 

det (cpjFZN) = det (,J,lr(FZN)) = det (,J,jr(FZN)@Q) = det (,J,@Q) = det ,J,. 

• 

Now (2.1) may be embedded in the commutative diagram 

(2.2) 
T-AutN 

!u 
T-AutNlc 

-1+ (Z /e)* /{±1} 
II 

L (Z/e)*/{±1} 

--I+ 

--I+ 

(see (4.1) of [CH]), where u(cp) = cp x Id, Id being the identity on N1c- 1. (It is 
easy to see that Tande remain unchanged when one passes from N to N1c). 
We claim then that it follows from (2.2) that Theorem 1.3 will be proved when 
we have established the following proposition. 

PROPOSITION (2.2). Let NE J/1 and let us adopt the notation and data of 
Section 1. Then, in (2.2), Im 7i consists of those residue classes [ml, moduw 
±1, such that 

(2.3) od l· • ,\ m = "i m P/, Bi = ±1, , = 1, 2, ... , . 

This was, of course, precisely the approach taken in [CH] to prove Theorem 
1.2. In that special case, however, no problem of realizability arose. Once it 
was shown that any [m] in Im 7i satisfied m = ± 1 mod t, Theorem 1.2 followed 
immediately. Here we must also show that all m given by (2.3) can be realized 

· by some .T-automorphism of Nlc. 
We come now to our final set of preliminary observations before proceeding 

to the proof of Theorem 1.3. Let M E }10 satisfy the supplementary conditions 
(a), (b) defining the subclass J/1, but not necessarily (c); we will be applying 
our forthcoming remarks to the case M = Nlc. Let T be defined as before. If 
cp is an endomorphism of M, then cp induces a commutative diagram 

(2.4) 

TM >--t 

!a 
TM >--t 

M .L.+. FM 

! cp ! ,J, 
M .L.+. FM 

LEMMA (2.3). cp is a T-aut;omorphism it and only it a is an automorphism 
and ,J, is a T-automorphism. 

Proof. It follows from the standard properties oflocalization that cp is a T­
automorphism if and only if a and ,J, are T-automorphisms; but, since TM is 
itselfT-local, a is a T-automorphism if and only ifit is an automorphism. • 

LEMMA (2.4.) (i) a(e.a) = ,J,e.aa 
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(ii) Suppose, conversely, that a diagram 

TM >-+ M ~ FM 

ta L,Ji 
TM>-+ M~ FM 

is given such that a(!.a) = ,Ji!.aa. Then we may find r.p : M - M making a 
commutative diagram(2.4). 

Proof. This argument was given in [H]; note that conclusion (i) requires 
that TM be commutative, but conclusion (ii) does not. Of course, it is crucial 
that M be a semidirect product. • 

3. Proof of Theorem 1.3 

Let r.p : Nk - Nk be a T-automorphism. Then (see (2.4) and Lemma 2.3) 
r.p gives rise to the commutative diagram 

>-+ -(3.1) 
>-+ -

where 1/J is a T-automorphism, so that det ,p is prime to T. Note that, by 
Lemma 2.1, det,p = O(r.p) in (2.2). Let n = p;7"1 p;"2 • .. pf\ t = p~1 p;2 • • • p~J.. as 
in (1.2), (1.3). Let p be a typical prime occurring in the prime factorization of 
t with exponent 1 l, and let TNp = (a1 1 a2 1 ••• , ar) = ffii=IZ /pd•, with m = d1 ~ 
d2 ~ · · • ~ dr, Now if FN = (!), then e.a = ua, a E TNp, where u is of order 
p1 mod pm. Write, in an obvious notation, 

(3.2) 

Let 

(3.3) 

TN; = (ai(s)), 

FNk = (e(a)), 
i = 1, 2, ... , r; B = 1, 2, ... , k. } 

8 = 1, 2, ... I k. 

We now exploit the key relationship (Lemma 2.4(i)), 

(3.4) 

First, set W = 8. Then U I: ai(a);(v)a;(v) = TI efj{ I: ai(s);(v)a;(v) 

= I: u.B"°ai(a);(v)a;(v)· We conclude that 

(3.5) ifp )ai(a)l(v), then f3sv = 1 mod p1 

1 We allow I = 0 as a possibility rendering the argument trivial. 
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Now let W =/= 8. Then~ ai(s)j(v)aj(v) = II et;,'~ a,(a)j(v)aj(v) 

= ~ u~"' 0 ai(s)j(v)aj(v) · We conclude that 

(3.6) ifp ,rai(a)l(v), and w =/= 8, then f3wv = 0 mod p1 

Fix v. Then 3i(s) such that p ;ja,(s)l(v), since a is an automorphism. With 

8 chosen from such an i(s), f3sv = 1 mod p1, f3wv = 0 mod p1, w =I= 8, by (3.5), 
(3.6). Thus the matrix of,µ, reduced mod p1, reads 

0 

0 
1 
0 

0 

in each column. Now T/J is a T-automorphism, so that p ,r det ,p. Thus det ,/J ,!. 
0 mod p1. This implies that, in the matrix of,µ, reduced mod p1, the non-zero 
entries oreupy different rows. Thus det T/J = ±1 mod p1• Thus 

for all primes Pi in the factorization oft as II p!;. This shows that Proposition 
2.2 holds in one direction. 

We now move to the converse. We consider a residue m mod t such that 

(3.7) l. . 
m = e1 mod p/, i = 1, 2, ... , >., where ei = ±1 

and we show the existence of a T-automorphism t,p : Nk -+ Nk inducing tp : 
FNk -+ FNk with det ,p = m. Once again we fix a particular p among the 
prime factors of n and we describe a and ,p explicitly; actually, we determine 
a completely, but are content to determine the matrix of ,p mod t; once again, 
any prime p for which the exponent l in (1.3) is O plays essentially no role. We 
write ep fore, in (3. 7), if p = Pi· Then if ep = 1, a(ai(s)) = ai(a), all i(8); while, 
if ep = -1, a(ai(l)) = ai(2), a(a 1(2)) = ai(l), a(ai(s)) = ai(s), B ~ 3. Plainly a 

is an automorphism. We subject the matrix (/3111) of VJ, 1 S 8, / 5 k, to the 
conditions 

(3.8) { 
/311 = /322 = 1 mod p1; /312 = /321 = 0 mod p1; 
/338 = 1, B ~ 3; /381 = O, otherwise if ep = 1 

/311 = /322 = O mod p1; /312 = /321 = 1 mod p1; 

/3aa = 1, B ~ 3; /3111 = O, otherwise if ep = -1 
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It is clear from the Chinese Remainder Theorem that these conditions can 
be satisfied simultaneously for all p entering the factorization oft and that 
the matrix of 1/J is determined mod t. It is also plain from ( 3. 7) and (3. 8) that 
det 1/J = m mod t. Of course, m is prime to t, so 1/J is a T-automorphism of 

FNk. 
It remains to verify the key relationship (3.4). For then, by Lemma 2.4(ii), 

we can find 'P : Nk -+ Nk making the diagram (3.1) commutative and, by 
Lemma 2.3, 'P will be a T-automorphism; finally, by Lemma 2.1, O('P) is the 
residue class of m, modulo ±1, so that we have realized m. Thus Proposition 
2.2 will have been proved and, with it, Theorem 1.3. 

Thus we must verify that 

(3.9) 

It is plain that we need only concern ourselves with w = 1, 2; s = 1, 2, and that 
we can look at (3.9) at each prime p appearing in the factorization (1.3) oft. 

Assume first that ep = + 1. Then 

o:(e(l)·ai(l)) = e(l)·ai(l)• 1/J€(1)·0:ai(l) = efN .ai(l) = €(1)·ai(l) 

since /Ju = 1 mod p1; 

o:( €(1) .ai(2)) = ai(2), 1/J€(1)·0:ai(2) = ef1Y .ai(2) = ai(2), since /312 = 0 mod p1 j 

o:( e(2) ·ai(1)) = ai(l), 1/J€(2)-0:ai(l) = eby .ai(l) = ai(l), since /321 = 0 mod p1; 

o:( €(2) ·ai(2)) = €(2) .ai(2), 1/J€(2) .o:ai(2) = er tt ·ai(2) = €(2) .ai(2), 

since /322 = 1 mod p1. 

Now assume that ep = -1. Then 

o:(€(1)·ai(1)) = €(2),ai(2)11/J€(1)·0:ai(l) = ef2Y,ai(2) = €(2),ai(2), 

since /312 = 1 mod p1; 

o:(e(1)·ai(2)) = ai(l)• 1/J€(1)·o:ai(2) = efN .ai(l) = ai(l)• since /311 = 0 mod p1; 

o:( e(2)·ai(1)) = a,(2), 1/J€(2) ·o:ai(l) = ef:t .ai(2) = a,(2), since /322 = 0 mod p1; 

o:(€(2)·ai(2)) = €(1),ai(l), 1/J€(2)·0:a,(2) = €ft{ .ai(l) = €(1)·ai(l)• 

since /321 = 1 mod p1• 

Thus (3.9) (or (3.4)) is verified and the proofof Theorem 1.3 is complete. 

4. An example 

Let N = (z, y; z225 = 1, yzy- 1 = z16). It is then easy to see that N E J/1; 
indeed TN= Z /225 = (a), FN = Z = (e), and e.a = 16a. Moreovert = 15 and, 
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for any m prime tot, we obtain a group Nm in the genus of N corresponding to 
[m] E (Z/t)" /{±1} by replacing 16 by mm in the second relation for N. Note 
that (Z/t)"/{±1} ~ Z/4, generated by the residue class [2]. Thus 9(N) = 
Z /4, but 9(Nk) = Z /2 if k 2: 2. We pass from 9(N) to 9(Nk) by killing the 
residue class m, mod 15, such that m = +1 mod 3,m = -1 mod 5, that is, 
by killing m = 4. Thus 9(Nk) is generated by N2 x Nk-l and we have the 
non-cancellation phenomenon 

(4.1) 

Note that 

(4.2) { N2 = (x, Yi x225 = 1, yxy-1 = x31) 
N4 = (x, Yi x225 = 1, yxy-1 = x61) 

Of course, the situation and phenomena described in this example are quite 
typical. 
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