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CHARACTERISTIC NUMBERS FOR THE 
BORDISM OF IMMERSIONS 

BY M.A. AGUILAR 

1. Introduction 

We consider immersions of closed smooth n-manifolds in closed smooth ( n+ 
k )-manifolds with a G-structure on their normal bundle. The equivalence 
classes modulo bordism of such immersions form an abelian group under 
disjoint union which we denote by Ia(n,k). In section 2 we show that the 
James-Hopf maps give a splitting of la(n,k) in terms ofbordism groups of 
vector bundles with a :Er JG-structure, where :Er f G is the wreath product 
of a symmetric group and G. With this result we give, in section 3, conditions 
for an immersion to be bordant to an embedding. In section 4 we associate 
characteristic numbers to a self-transverse immersion which determine the 
bordism class of the immersion. We use these numbers to show that certain 
immersions are not bordant to oriented immersions and that certain oriented 
immersions are not bordant to spin immersions. 

2. A splitting for the bordism of immersions 

PRELIMINARIES (2.1). Let G be a compact Lie group and let t.p: G-+ O(k) 
be a continuous homomorphism. We consider immersions f : M-+ N, where 
Mis a closed smooth n-manifold and N is a closed smooth (n + k)-manifold, 
such that the normal bundle v1 has a G-structure. Given two immersions 
fi : M 1 -+ N 1 and f2 : M 2 -+ N 2, we say that they are bordant if there exists 
an immersion F : V -+ W with a G-structure on VF such that i) V is a 
compact smooth (n + 1 )-manifold whose boundary av is diffeomorphic to the 
disjoint unionM1IIM2, ii) Wis a compact smooth (n+k+ 1)-manifold such 

. that aw is diffeomorphic to N1 II N2, iii) F IM1 = fi and F IM2 = f2, iv) 
th~ G-structure on VF induces the given G-structure on vii and v12. We denote 
by Ia(n,k) the set of equivalence classes and by ff: M-+ N] the equivalence 
class of an immersion. We can make I G ( n, k) into an abelian group by defining 
ff1 : M1 -+ N1] + ff2 : M2-+ N2] = ff1 IIf2 : M1 II M2-+ N1 II N2]. Every 
element has order 2 so Ia(n,k) is a ~-module. 

Let X be a space, define the r-th configuration space F(X; r) of X by 
F(X; r) = {(x1,x2, ... ,xr) E xr I Xi f= Xj ifi f= j }. The symmetric group :Er 
acts freely on F(X;r) by permuting the factors. If Y is a space then Er acts 
on yr by permuting the factors and we denote by F(X; r) x yr the quotient 
space under the diagonal action. ~r 

We say that an immersion f : M-+ N is self-transverse if r : Mr -+ Nr 
restricted to F(M; r) is transverse to the diagonal .6. C Nr, r 2'.: 2. Since any 
immersion is regularly homotopic to an immersion which is self-transverse 
then any class in Ia(n, k) can be represented by a self-transverse immersion. 

27 



28 M.A. AGUILAR 

Let f : M -+ N be a self-transverse immersion. Then µr = fr I F (M; r )-1( ~) 
is a compact manifold. The free Er-action on F(M; r) restricts to µr and 
µr/"£r is called the manifold ofr-tuple points. We can also define the manifold 
of based r-tuple points by µr /Er-1, where Er-1 acts by permuting the first 
(r-1) coordinates. Define immersions fr : µr /Er -+ N and <Pr : µr /Er-1 -+ M 
by fr[X1,x2, ... ,xr] = f(x1) and <Pr[x1,x2, ... ,xr] = Xr, Their normal bundles 
are given by Vfr = [(vrY I µr]/Er and Vef>r = [(vry- 1 

X {O} I µr]/Er-1· 
Let f : M -+ N be a self-transverse immersion of codimension k. We denote 

by fo the pull-back of the universal vector bundle over BO(k) along the map 
Bcp: BG-+ BO(k). Let v: M-+ BG be the lifting given by the G-structure 
on v1. Then we have a bundle map 

M-BG 
v 

If e : M -+ JR00 is an embedding then we get a bundle map 

- F(JR00 ;r) Xe& 
Er 

lid x pr 
Er 

F(JR00
; r) x BGr 

Er 

where 8r[v1, ... 'Ur] = [eq(v1), ... 'eq(vr ), v(v1), ... 'v(vr )] and 6r[x1, ... ,Xr] = 
[e(x1), ... , e(xr ), v(x1), ... , v(xr )]. 

We denote by Er JG the semi-direct product of Er and Gr, where Er acts 
on Gr by permuting the factors. 

The space F(JR00 ;r) is contractible [8]. It is the direct limit limF(JRn;r), 
n 

where each F(JRn; r) is a smooth manifold. Hence F(JR00
; r) is a numerable 

CW -complex. The same holds for EG which can be taken as a limit of Stiefel 
manifolds. Therefore F (JR00

; r) x-EGr is contractible and completly regu­
lar. We can define a free action of Er J G on this space by (a, b 1, ... , b r) • 
(u,g1, ... ,gr) = (a· u, b(T<l> • g1, ... , ba(r) ·gr). Since Er JG is a compact Lie 
group, by a theorem of Gleason the quotient map is a principal Er f G-bundle. 
Therefore [F(JR.00

; r) x EGr]/Er f G ~ F(JR00
; r) x BGr = B(Er f G). 

Er 

There is a linear action of Er f G on (JRkY given by (u,g1, ... ,gr)· 
(v1, ... , v,.) = (ga-1(1) · Va-1(1), ... ,ga-l(r) · Va-l(r)). This action gives a rep­
resentation p : Er JG -+ O(rk). One can easily show that the pull-back of 
the universal rk-vector bundle along the map B pis the bundle with projection 
id x pr defined above. 

Er 
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Recall that a coefficient system C defines a functor C from the category of 
based spaces to itself [3]. The cubes operad C00 [8] determines a coefficient 
system by neglect of structure. We denote by C00 the functor associated to 
C00 • The functor defined by the system C(JR.00

) of configuration spaces ofJR.00 

will be denoted by CJR. = . 
Given a pointed space X, we denote by QX the direct limit, under sus­

pensions, I~ n,nsn(X), where nn(-) denotes the space of n-loops and where 
n 

sn(-), denotes then-th suspension. 
We denote by MO the Thom spectrum for unoriented cobordism and by 

N* ( - ) the associated geometric homology theory [ 4]. 

Definition (2.2). We are going to define an isomorphism 

where Tfo is the Thom space of the bundle fo. 
According to [10] there is an isomorphism ak : la(n,k) -+ Nn+k(QTea) 

given as follows. If [f: M--+ N] E la(n,k), then one can find an embedding 
/ 0 : M --+ N x JR.m (taking m, > n - k + 1) regularly homotopic to the compo-

sition M L N C N x JR.m. Clearly we have that v10 ~ v1 EB cm, where cm is 
the trivial m-bundle. Applying the Thom-Pontryagin construction we get a 
stable map tr: S 00 (N+)--+ S00 (Tvr), whereN+ denotesNil{+ }. The lifting 
of the classifying map for vr induces a map of Thom spaces Tf : Tvr-+ Tea, 
Taking the adjoint of S 00 rr o tr we get a map N c N+ --+ QTfo, representing 
akff: M--+ N]. 

Let X be a connected CW -complex. There is a weak homotopy equivalence 
, 00 : C00 X-+ QX [8] and a homotopy equivalenced: C00 X--+ CJR.="X [7]. 

Therefore we can define /Jk by the commutativity of the following diagram: 

---+ 

Definition (2.3). Given a pointed space X, we denote by DrX the space 
F(JR.00

; r )+ /\ x(r), where x(r) denotes the smash product of r copies of X. 
Er 

By [3,11] there exist maps of spectra hr : S 00 CJR.ooX -+ S 00 DrX, r 2'.: 1, 
whose adjoints are called James-Hopf maps, such that the induced map h : 
S 00 CJR.ooX -+ V S 00 DrX is a homotopy equivalence. Therefore we can de­

r~ 1 

fine homomorphisms hr : N*(CJR.00 Tfo,*) --+ N*(DrTea,*),r 2'.: 1, by the 
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commutativity of the following diagram: 

-
hr .• -

Ire= (E,p,B)isa vector bundle with Thom space Te, then the Thom space 
of the vector bundle F(JR.00

; r) x Er_ - F(JR.00
.; r) x Br is given by Dr(Te). 

Er 1d X pr Er 
~r 

PROPOSITION (2.4). Consider the honwmorphism given by the composition 

Ia(n, k) ~ Nn+k(CJR.=Tfo) ~ Nn+k(CJR.= Tfo, *) ~ Nn+k(DrTfo, *) ~ 
Nn-(r-l)k(F(JR. 00

; r) X BGr), 
Er 

where j is the inclusion and <I> is the Thom isonwrphism. If r > 1, then this 
honwmorphism niaps the class of a self-transverse immersion f : M -+ N t;o 

the class [µr/Er, 8r]. Ifr = 1, then it niaps [f: M-+ N] to [M, v]. 

Proof. Let us denote by [N, 7/J] the class of j*(ik[f : M -+ N]. Let 
i : (N, 0) -+ (N+, +) be the inclusion. We denote by '!j;+ : (N+, +) -+ 

(CJR.=Tfo, *) the extension of 7/J to N+. Clearly we have that [N, 7/J] = 
7/Jt[N, i]. SinceN is compact the stable map hr o 8 00 7/J+ should be given by a 
map g: sm(N+)-+ sm(DrTfo), with m large enough. Therefore hr[N, 7/J] = 
(Em)- 1g*Em[N,i], where Em : Nn+k(N+,+) -+ Nn+k+m(Sm(N+),*) and 
p:m)-1 : Nn+k+m(SmDrTfo, *) -+ Nn+k(DrTfo, *) are the suspension iso­
morphisms. The composition <I>0 (Em)- 1 =~is the Thom isomorphism for 
the bundle [F (JR. 00

; r) x fo] EB €m. 
Er 

On the other hand, if r > 1, then the composition N -±.+ CJR. = T fo a~ 

QDrTea represents, under the Thom-Pontryagin construction, the immer­
sion fr : µr /Er -+ N [7]. By the naturality of adjointness we have that 
adj hr o 7/J+ '.:::'. adj (hr o 8 00 7/J+). Hence the map g inducing hr o 8 00 7/J+ 
is the Thom-Pontryagin map for the embedding µr /Er -+ N x JR.m, whose 
projection is the immersion fr. 

Let 1m be the product of m copies of the unit interval. Then one can eas­
ily show that Em[N,i] = [N x 1m,q], where q : N x 1m -+ sm(N+) is the 
identification map. 

Using the geometric definition of the Thom isomorphism [1] we see that 
<I>hr[N,7/J] = ~g*[N X lm,q] = [µr/Er,8r], 

Ifr = 1, then we get N _j_ CJR.=Tfo ~ C00 Tfo ~ QTfo, where dis a 
homotopy inverse ford. Since this map corresponds to the immersion f, its 
image is [M, v] • 
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Definition (2.5). WecangiveaninterpretationforthegroupNm(B(:Er JG)) 
(for r = 1, E 1 JG = G) as follows. We consider pairs ( 17 --+ M, cp ), where 
'T/ is an ( rk )-vector bundle over a closed smooth m-manifold and <.p : 'T/ --+ 

F(JR00
; r) x e& is a bundle map. We say that ( 'T/1 --+ M 1, 'Pl) and ( 'T/2 --+ M 2, 'P2) 

Er 
are bordant if : i) there is a compact smooth (m + 1)-manifold V such that 
aV ~ M 1 II M 2, ii) there is an (rk)-vector bundle, --+ V with a bundle 
map 'If; : / --+ F(JR00

; r) Xe& ' iii) there is an isomorphism hi : 1Ji ~ l;, 
Er 

such that 'If; o t;, o hi = 'Pi (i = 1, 2), where t;, : lt'TJ --+ 1 is the bundle map 
induced by the embedding li : Mi --+ V. Notice that if two bundle maps 
<.p, cp' : ,,, --+ F(JR00

; r) Xe& are homotopic then (TJ --+ M, cp) and ('TJ --+ M, <.p1) 
Er 

are bordant. The definition of structure using bundle maps is equivalent to 
the definition using liftings [2]. 

We denote by Nm[Er JG] the set ofbordism classes and by [TJ--+ M, rp] the 
equivalence class of a pair. This set is a group under disjoint union. 

One can easily show that there is an isomorphism: 

given by 
[M,f] ~ [f*(F(R 00 ;r) x <;c;) --+M,f]. 

Er 

THEOREM (2.6). There is an isomorphism 

given by 

Ia(n, k) ~ Nn+k E9 Nn[G] E9 E9Nn-(r-l)k[Er JG] 
r2:2 

rt: M--+ N] ~ ([N], [vf--+ M, v], 2)vtr--+ µr/Er, 8r]), 
r>2 

for n 2: 0, k > 0. 

Proof. By 2.2 we have an isomorphism f3k : Ia(n,k) ~ Nn+k(C]RooTfo). 
If j : ( CJR oo Tea, 0) --+ ( CJR oo T fo, *) denotes the inclusion, then we have an 
isomorphism 

N'n+k(C]RooTfo) ~ N'n+k E9 N'n+k(C]R00 Tfo, *) , 

given by [N, 'l/;] ~ ( [N] ,j * [N, 'If;]). The spectrum MO satisfies the wedge axiom 
so by 2.3 and the Thom isomorphism we have that 
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Therefore the theorem follows from 2.4 and 2.5. D 

This result is based on the author's thesis (University of Warwick, 1984). A 
different approach which does not use stable homotopy, based on unpublished 
work by P. Schweitzer can be found in [6]. 

3. Bordism of embeddings 

Let Ea ( n, k) be the set of bordism classes of embedings e : M -+ N, where 
Mis a closed smooth n-manifold and N is a closed smooth (n + k)-manifold, 
such that the normal bundle ve has a G-structure. The definition ofEa(n,k) 
is the same as that ofl 0 (n, k) but we now take embeddings instead of immer­
sions. By taking disjoint union of embeddings we can make Ea(n, k) into a 
Z,2-module. The structure of Ea(n, k) is given by the following 

THEOREM (3.1) [14]. The Thom-Pontryagin construction defines an isonwr­
phism ak: Ea(n,k)-+ Nn+k(Tfo). • 

THEOREM (3.2) Let f : M -+ N be a self-tranverse immersion. Then f is bor­
dant t,o an embedding if and only if, for each r ~ 2, the bundle vfr -+ µr /r.r 
bords. 

Proof. By 3.1, the Thom isomorphism and 2.5, we have an isomophism 
Ea(n, k) ~ Nn+k E0 Nn[G] given by [g: M-+ N] 1----+ ([N], [vg-+ M, v]). 

Let,.\ : Ea(n,k) -+ I0 (n,k) be the homomorphism which maps the bor­
dism class of an embedding to its class in I 0 (n,k). Then an immersion is 
bordant to an embedding if and only if it belongs to the image of..\. Using 
the isomorphism in 2.6 we have the following diagram: 

Ea(n,k) 

Al 
Ia(n,k) -

where l in the inclusion. The result now follows from the commutativity of 
this diagram. D 

4. Characteristic numbers 

Definition (4.1). Let [77 -+ M, r.p] be an element of Nm[L.r JG]. We de­
fine characteristic numbers for 77 as follows. For each cohomology class c E 
Hl(B(r.r JG); Z,2) and each partition p of m - j (i.e., a sequence O ::; i1 ::; 
... ::; is such that i 1 + ... + is = m - j) there is associated a Whitney number 
(wp(M)r(c), a-(M)), where Wp(M) is the product Wi1 (M) ... Wis(M), a-(M) is 
fundamental class of M and <j5 : M -+ B(r.r f G) is the map induced by r.p. 
Notice that when c = 1 we get the ordinary Stiefel-Whitney numbers of M. 
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We associate to-each self-transverse immersion f : M -+ N the character­
istic numbers of N and of each of the normal bundles vr, vr

2
, vr

3
, ... , vft , ( t :=; 

(n/k) + 1), which we call the characteristic numbers off. 

THEOREM (4.2) Let f : M -+ N and g : M' -+ N' be self-transverse immer­
sions, then f and g are bordant if and only if their characteristic numbers are 
equal. 

Proof. By a theorem of Thom [13] the Stiefel-Whitney numbers of a mani­
fold determine its bordism class. The homology groups H* (B(Er f G); ::Z2) are 
of finite type so by [4] and 2.5, the characteristic numbers of each 
normal bundle determine its bordism class. Therefore the theorem follows 
from 2.6. • 

Now we will use these characteristic numbers to show that certain im­
mersions are not bordant to oriented immersions and that certain oriented 
immersions are not bordant to spin immersions. 

Definition (4.3). Consider the antipodal action of E2 on the sphere sn. 
If X is any space then we denote by sn x X x X the quotient space un­

E2 

der the action (a,x1,x2) 1--+ (-a,x2,x1). If X is a smooth manifold then 
sn x X x X has a smooth structure such that the projection p : sn x X x X 

E2 
-+ sn x X x X is a local diffeomorphism. Let JR.Pm be the real projective m­

E2 

space and let e : IRPm -+ JRPm+ 1 be the canonical embeddiny- We define an 
immersion f : sn X JRPm+l X :IRPm -+ sn X JRPm+l X JRPm+ by f(a,y,x) = 

E2 . -

[a,y, e(x)]. Similarlf if cpm denotes the complex projective m-space and 
e' : cpm -+ cpm+ the canonical embedding then we have an immersion 
g : sn X cpm+l X cpm -+ sn X cpm+l X cpm+l given by g(a,y',x') 

E2 

[a,y', e'(x')]. 

PROPOSITION ( 4.4) i) For each m 2: 0, n 2: 0, the immersion 
f : sn X JR.Pm+l X IRPm -+ sn X JRPm+l X JRPm+l is self-transverse, with 

E2 

normal bundle vr = sn x JRPm+l x 'Ym, where 'Ym is the canonical real line 
bundle over IR.Pm. ii) The manifold of double points is diffeomorphic to 
sn X IRPm X IR.Pm and the normal bundle vh is isonwrphic to sn X 'Ym X 'Ym. 

E2 E2 

Proof. i) The immersion f is the composition of the embedding 

id X id Xe : sn X JRPm+l X :IRPm -+ sn X JRPm+l X JR.Pm+1, 

with the covering projection 

p : sn X JRPm+ 1 X JRPm+ 1 -+ sn X JRPm+ 1 X JR.Pm+ l _ 
E2 
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Using the differential of the involution on sn x ]Rpm+ 1 x ]Rpm+ 1, one can 
define a :E2-action on the tangent bundle T(Sn x JRPm+l x JRPm+1), making 
this bundle into a :E2-bundle. The morphism of vector bundles 

F: T(Sn X TI_tl)m+l X TI_tl)m+l)/:E2-+ T(Sn X ]Rpm+l X TI_tl)m+l) 
E2 

given by F[w] = dp(w) is an isomorphism. Therefore the composition 

~ T(Sn X TI_tl)m+l X TI_tl)m+l) ='= 
E2 

~ T(Sn x Il.lPm+l x· JRPm+l)/:E2 

maps an element w to [w]. Since this equivalence relation identifies an ele­
ment of the form (z,a,/3) with (dA(z),/3,a), where A is the antipodal map, 
then the images of the tangent spaces over (a, e(x1),x2) and (-a, e(x2),x1) are 
in general position. The normal bundle of the embedding e : ]Rpm -+ ]Rpm+ 1 
. h - sn mnm+l IS 'Ym, ence Vf - X 1.tli"" X 'Ym. 

ii) Since the immersion f has nor-tuple points for r > 2, we have that 
µ2/Y:,,2 ='= sn x JRPm x JRPm. From the definition of the classifying map for 

E2 
v12 given in 2.1, it is clear that v12 ='= sn x ,m x ,m • 

I:2 
Since the normal bundle of the embeddinge' : (Cpm -+ cpm+ 1 is the canon-

ical complex line bundle over (Cpm, we also have the following result. 

PROPOSITION (4.5) 
i) For each m 2: 0, n 2: 0, the immersion g : sn x cpm+ 1 x cpm -+ 

sn x (Cpm+ l x c_pm+ l is self-transverse, with normal bundle Vg = sn X 
E2 

cpm+ 1 x Am, where Am is the canonical complex line bundle ov~r (Cpm. 
ii) The manifold of double points is diffeomorphic t;o sn x cpm x cpm and 

E2 
the normal bundle vg2 is isomorphic to sn x Am x Am • 

E2 
In order to calculate the characteristic numbers we need the following re-

sults about the quadratic construction. 
We denote by B* the normalized Bar resolution for Z2 over :E2, there­

fore each Bn is a free Z2(Y:,2]-module in one generator en. Let BSn) be the 
n-skeleton of B*. 

THEOREM (4.6) [5]. i) There is a natural isonwrphism 

H*(sn X X XX; Z2) ~ H*(BSn) ® H*(X)® 2), 
E2 Z2[E2] 

where H*(X)® 2 = H*(X; Z2) ® H*(X; 22) is a chain complex with trivial 
boundary and with Y:,2 acting by permuting the factors. 

ii) Let {aj}jEJ be an ordered basis for H*(X; 22). 
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A 71.2-basis for H*(B* ® H*(X)® 2) is given by the following element;s 
~[l:2] 

Definition (4. 7). By 4.6 we can define natural functions 

q~ : Hi(X; 71.2)-+ H2i+r(Sn x Xx X; 71.2), 0::; r::; n::; oo 
l:2 

35 

• 

where h~(a) = er®a ® a. 
l:2 

Definition (4.8). Let P : Hm(X; 71.2) -+ H2,n(S 00 x X x X; 71.2) be Steen­
l:2 

rod's external power operation [12] and let 1r : S 00 x Xx X-+ JRP00 be the 
l:2 

projection. We define a transformation 

Pn : Hm(x; 71.2)-+ H2Tn+ncs00 XX XX; 71.2) 
l:2 

by Pn(o:) = 1r*(wn) ,__ P(o:), where w = w1(, 00 ). Let f : X -+ Y be a map, 
then from the naturality of the power operation we obtain the commutativity 
of the following diagram: 

-----+ 

Pn 
-----+ 

H2m+ncsoo X y X Y; 71.2) 
l:2 

l(id X fxf)* 
I::2 

H2Tn+ncs00 XX XX; 71.2) 
l:2 

Let {a0,a 1, ... ,} and {o:o, 0:1, ... } be dual bases for H*(X; 71.2) andH* (X; ~) 
respectively. By 4.6 a basis for H*(S 00 x X x X; 71.2) is given by {qF(aj) I 

l:2 

i,j ~ O} U {ajk U < k}, where ajk is the image of eo~aj ® ak under the iso-

morphism 4.6 i). If 

{qr(aj)* I i,j ~ O} u {a]k u < k} 

is the dual basis for H*(S 00 x Xx X; 71.2), then we have the following 
l:2 
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PROPOSITION (4.9) [9]. qi(aj)* = Pi(o:j) • 

The relation between the characteristic numbers and the geometric prop­
erties that we need is given by the following 

THEOREM ( 4.10) [ 4]. Let f : X --t Y be a map between spaces of finite type. 
The necesary and sufficient condition that [M, <p] E Nn(Y) lie in the image of 
f* : Nn(X) --t Nn(Y) is that every characteristic number of [M, <p] associated 
with an element in the kernel off* : H*(Y; Z2) --t H*(X; Z2) must vanish. • 

THEOREM (4.11). The immersions 

f: sn x IHPm+l x IHPm --t sn x J:HPm+l x IHPm+l, for n ~ 0 and m > 0, 
:E2 

are not bordant to immersions with oriented normal bundle. 

Proof. By 2.6 we have the following commutative diagram: 

lso(l)(2m + n + 1, 1) === N2m+n+2 EB N2m+n+1[SO(l)] EB N2m+n[I::2 f S0(1)] EB··· 

Fl lw l~ l~ 
IO(I)(2m +n + 1, 1) === N2m+n+2 EB N2m+n+1[0(l)] EB N2m+n[~2f 0(1)] EB··· 

To prove the theorem we have to show that the class off is not in the image 
of F. By 4.4, the image of ff] under the isomorphism is 

We will see that the class of the bundle sn x ,m x ,m is not in the image of 
:E2 

F2 (notice that since sn is a boundary, [Sn x J:HPm+l x ,m] = 0). There is 
a E2-equivariant homotopy equivalence F(JR00

; 2) :::: S 00
, so the homomor­

phism F2 is induced by the map id x Bi x Bi : S 00 x BSO(l) x BSO(l) --t 

:E2 :E2 
S 00 x BO(l) x BO(l), where i: S0(1) --t 0(1). 

:E2 

Ifwe take the classPn(w1( ,oor) E H 21n+n(S 00 X IHP00 x IHP00
), with m > 

E2 

0, then by (4.8), we have (id x Bi x Bi)*(Pn(w1(, 00 r)=PnBi*(w1(, 00 r'') = 
:E2 

0, since Bi*(w1Croo)) = 0. Therefore Pn(w1(,oor) E ker(id x Bi x Bi)*. 
:E2 

Consider the following pull-back diagram: 
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Sn X 'Ym X 'Ym - S 00 
X 'Ym X 'Ym - S 00 

X 'Yoo X 'Yoo 
E2 E2 E2 

l in x idxid l id X}mxim l D2 D2 
Sn X IR.Pm X JR.Pm soo X IR.Pm X IR.Pm soo X JR.POO X JRPOO 

E2 E2 E2 

where in and}m are the canonical inclusions. We want to calculate the char­
acteristic number (<p*(Pn(w1(100)fil)),a-(Sn x ]Rpm x ]ltl>m)), where r.p is the 

:E2 

map given by the composition at the bottom. If M is a connected m-manifold 
then sn x M x M is also connected, hence 

:E2 

Since (in x id x id)* o q~ = q~, then (in x id x id)*q~(o-(M)) = q~(o-(M)) 
E2 :E2 

which is a generator by (4.6). Therefore 

q~(a-(M)) = a-(Sn X M X M). 
:E2 

Using the definition of <p, (*) and the naturality of Pn (4.8), we have: 
(<p*(Pn(w1("Yoo)fil)),a-(Sn X ]Rpm x ]Rpm))= 

:E2 

= ((in X id X id)*(id X}m x}m)*(Pn(w1("Y00 )fil)),q~(a-(]ltl>m))) 
:E2 :E2 

= ((id X}m X}m)*Pn(w1( 1oo)fil)),q~(a-(]ltl>m))) 
:E2 

= (Pn(w1(1m)fil),q~(a-(]ltl>m))) 
= (q~(a-(ll.U'm))*,q~(a-(]ltl>m))) = 1, by 4.9, since w1(1m)fil and a-(ll.U'm) 

are duals. 
The theorem now follows from 4.10. D 

THEOREM ( 4.12). The immersions 

g: Sn X (Cpm+l X (Cpm-+ Sn X (Cpm+l X (Cpm+l, for n ~ 0 
:E2 

and m > 0, are not bordant to immersions whose normal bundle has a 
Spin (2)-structure. 

Proof. By 2.6 we have the following commutative diagram: 
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To prove the theorem we have to show that the class of g is not in the 
image of F. By (4.5), the image of [g] under the isomorphism is 

([Sn X cpm+l X cpm+l], [Sn X cpm+l X Am], [Sn X Am X Am]). 
E2 E2 

We will see that the class of the bundle sn x Am x Am is not in the image 
E2 

of F2 (notice that since sn is a boundary, [Sn x cpm+l x Am] = 0). The 
homomorphism F2 is induced by the map 

id x Bp x Bp : S 00 x BSpin(2) x BSpin(2) --+ S 00 x BS0(2) x BS0(2), 
E2 E2 E2 

where p : Spin(2) --+ S0(2). 
If we take the class Pn(w2(A 00 )m) E H 4m+n(S 00 x CP 00 x CP 00

), 

E2 

with m > 0, then by (4.8) we have (id x Bp x Bp)*(Pn(w2(Aoor)) = 
E2 

Pn(Bp*(w2(Aoor)) = 0, since Bp*(w2(Aoo)) = 0. Therefore Pn(w2(A 00 r) E 
ker(id x Bp x Bp)*. 

E2 
Consider the following pull-back diagram: 

sn X Am X Am - S 00 
X Am X Am - S 00 

X Aoo X Aoo 
I:2 I:2 I:2 

l in x idxid l id X imXim l r::2 r::2 
Sn X ([:.pm X (Cpm S 00 xCPmxCPm 8 00 X (CP 00 X (CP 00 

I 

I:2 I:2 I:2 

where in and}m are the canonical inclusions. Then as in the proof of (4.11) 
we have: 

((in X id X id)*(id X }m x}m)*(P,,.(w2(Aoor)), u(sn x cpm x cPm)) 
E2 E2 E2 

= (Pn(w2(Amr),q~(u(CPm))) 
= (q~(u(CPm))* ,q~(u(CPm))) = 1, by (4.9), since w2(Amr and u(CPm) 

are duals. 
The theorem now follows from (4.10). D 
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