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CHARACTERISTIC NUMBERS FOR THE
BORDISM OF IMMERSIONS

BY M.A. AGUILAR
1. Introduction

We consider immersions of closed smooth 7-manifolds in closed smooth (n+
k)-manifolds with a G-structure on their normal bundle. The equivalence
classes modulo bordism of such immersions form an abelian group under
disjoint union which we denote by I5(n,k). In section 2 we show that the
James-Hopf maps give a splitting of I;(n, k) in terms of bordism groups of
vector bundles with a £, [ G-structure, where ¥, [ G is the wreath product
of a symmetric group and G. With this result we give, in section 3, conditions
for an immersion to be bordant to an embedding. In section 4 we associate
characteristic numbers to a self-transverse immersion which determine the
bordism class of the immersion. We use these numbers to show that certain
immersions are not bordant to oriented immersions and that certain oriented
immersions are not bordant to spin immersions.

2. A splitting for the bordism of immersions

PRELIMINARIES (2.1). Let G be a compact Lie group and let ¢ : G — O(k)
be a continuous homomorphism. We consider immersions f : M — N, where
M is a closed smooth n-manifold and N is a closed smooth (n + k)-manifold,
such that the normal bundle v, has a G-structure. Given two immersions
f1: M1 — Niandfy : Mg — N9, we say that they are bordant if there exists
an immersion F : V — W with a G-structure on vg such thati) V isa
compact smooth (7 + 1)-manifold whose boundary 9V is diffeomorphic to the
disjoint union M1 11Mpy, ii) W is a compact smooth (n+ £+ 1)-manifold such
. that 0W is diffeomorphic to N I Ny, iii) F|M; = f; and F | Mg = fo, iv)
the G-structure on vg induces the given G-structure on vy, and vy, . Wedenote
by I (n,£) the set of equivalence classes and by [f : M — N] the equivalence
class of an immersion. We can make I;(n, k) into an abelian group by defining
[f1: My — Ny|+[fo : Mg — No] = [f{ I fa : My 11 My — Ny Il Ng]. Every
element has order 2 so Iz(n, %) is a Zg-module.

Let X be a space, define the r-th configuration space F(X;r) of X by
F(X;r) = {(x1,x2,...,%r) € X" | x; # xjifi # j}. The symmetric group ¥,
acts freely on F(X;r) by permuting the factors. If Y is a space then X, acts
on Y by permuting the factors and we denote by F(X;r) x Y7 the quotient
space under the diagonal action.

We say that an immersion f : M — N is self-transverse if f7 : M™ — N©
restricted to F'(M;r) is transverse to the diagonal A C N7, r > 2. Since any
immersion is regularly homotopic to an immersion which is self-transverse
then any class in I3(n, k) can be represented by a self-transverse immersion.
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Letf : M — N be a self-transverse immersion. Then y, = f7 | F(M;r)~1(A)
is a compact manifold. The free X -action on F(M;r) restricts to u, and
ur/Zr is called the manifold of r-tuple points. We can also define the manifold
of based r-tuple points by u,/X,_1, where X,_1 acts by permuting the first
(r—1) coordinates. Defineimmersionsf; : pur /Xy — Nand ¢, : p- /3,1 —= M
by fr[x1,x2,...,%] = f(x1) and ¢r[x1,xg,...,xr] = x. Their normal bundles
are given by vy = [(vy)" | r)/Zr and v, = ()1 x {0} | pr)/Zp_1.

Letf : M — N be a self-transverse immersion of codimension k. We denote
by £ the pull-back of the universal vector bundle over BO(%) along the map
By : BG — BO(k). Let v : M — BG be the lifting given by the G-structure
on vr. Then we have a bundle map

v
vp — &g

M BG

Ife: M — R is an embedding then we get a bundle map

5
vy, —_— F(IRoo;r)Exrﬁé

‘[ Jid x p~
§r

”r/zr F(]Roo,r)z); BGT

where 6,[vy,...,vr] = [eq(v1),...,eq(vr),P(v1), ..., V(vr)] and 6pxy,. .., xr] =
le(x1),...,e(xr),v(x1),. .., (xr)].

We denote by T, [ G the semi-direct product of £, and G”, where X, acts
on G" by permuting the factors.

The space F(R*;r) is contractible [8]. It is the direct limit li’rln F(R"™;r),
where each F(R";r) is a smooth manifold. Hence F(R*;r) is a numerable
CW -complex. The same holds for EG which can be taken as a limit of Stiefel
manifolds. Therefore F(R*°;r) x EG" is contractible and completly regu-
lar. We can define a free action of ¥, [ G on this space by (a,b1,...,br) -
(0,81,---,8r) = (@-0,bs; -81,---,bo(r) - &r). Since Ty J G is a compact Lie
group, by a theorem of Gleason the quotient map is a principal £, [ G-bundle.
Therefore [F(R*;r) x EG"]/%, [ G = F(]R"o;r); BG™ = B(Zr [ G).

There is a linear action of ¥, [G on (IRk)" given by (o,81,-..,8r)
V1,3 Ur) = (85-1(1) "Vo=1(1): - - - 18— 1(r) *Vo—1(r))- This action gives a rep-
resentation p : £, [ G — O(rk). One can easily show that the pull-back of
the universal rk-vector bundle along the map Bp is the bundle with projection
id X p" defined above.
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Recall that a coefficient system C defines a functor C from the category of
based spaces to itself [3]. The cubes operad C, [8] determines a coefficient
system by neglect of structure. We denote by C, the functor associated to
Coo- The functor defined by the system C(R*) of configuration spaces of R*
will be denoted by Cppeo.

Given a pointed space X, we denote by @X the direct limit, under sus-
pensions, lim Q"S"(X), where (2"(—) denotes the space of n-loops and where

n
S”(—), denotes the n-th suspension.

We denote by MO the Thom spectrum for unoriented cobordism and by
N.(—) the associated geometric homology theory [4].

Definition (2.2). We are going to define an isomorphism
Br : Ig(n, k) — Ny p(CreTéq)-

where T¢ is the Thom space of the bundle &.

According to [10] there is an isomorphism o, : Ig(n,k) — N, (QT¢G)
given as follows. If [f : M — N] € Ig(n,k), then one can find an embedding
fo:M — N x R™ (takingm > n — k + 1) regularly homotopic to the compo-
sition M 1, N C N x R™. Clearly we have that v, = v © c™, where €™ is
the trivial m-bundle. Applying the Thom-Pontryagin construction we get a
stable mapz; : S®°(N+t) — S*°(Tvy), where N* denotes N 11 {+}. The lifting
of the classifying map for v; induces a map of Thom spaces 77 : Ty — Tég.
Taking the adjoint of S°°rf otr wegetamapN C N *t — QT¢g, representing
ap[f : M — NJ.

Let X be a connected CW -complex. There is a weak homotopy equivalence
Yoo : CooX — QX [8] and a homotopy equivalenced : Coo X — CRoo'X [71.

Therefore we can define §;, by the commutativity of the following diagram:

Ig(n,k) —— Npr(Cp=Tég)

ap | ‘ do |

Noik(@TEG) o Npya(CooTEG)

Definition (2.3). Given a pointed space X, we denote by DX the space
F(R>™;r)t I\ X where X(™) denotes the smash product of r copies of X.

By [3,11] there exist maps of spectra h, : S®Cp~X — S*D,X, r > 1,
whose adjoints are called James-Hopf maps, such that the induced map % :

SPCpeX — \>/IS°°DrX is a homotopy equivalence. Therefore we can de-
r—

fine homomorphisms k, : Nu(CpeTég,*) — Nu(DrTég,*),r > 1, by the
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commutativity of the following diagram:
Ne(Cp=Tég,*) ——  Nu(DrTég,*)

hr‘t
MO (S®Cpr=Tlz) —— MOL(S*D,T¢g)
If¢ = (E,p, B) isa vector bundle with Thom space T¢, then the Thom space
of the vector bundle F/(R*°; r) x E’.d—v F(R*°;r) X B" is given by D,(T¢).
r id x p” r
Zr
PROPOSITION (2.4). Consider the homomorphism given by the composition

ﬁ .li hr
I(n, k) 25 Ny (Creo TEG) L5 Ny in(Cree TéG ) 25 Ny n(Dr TG, %) —
Nn-—(r—l)k(F(Rm; r) 53( BG"),

where j is the inclusion and ® is the Thom isonwrﬁhism. If r > 1, then this
homomorphism maps the class of a self-transverse immersion f : M — N fo
the class [pr /Sr,67). If r = 1, then it maps [f : M — N] to [M,7].

Proof. Let us denote by [N, ] the class of j.G,[f : M — N]. Let
i : (N,0) — (NT,+) be the inclusion. We denote by v+ : (Nt ,+) —
(Cpr>Tég, *) the extension of ¢ to N*. Clearly we have that [N,¢] =
Y3 [N,i]. Since N is compact the stable map A, o S®¢* should be given by a
map g : S™(N+) — S™(D,Tég), with m large enough. Therefore 2, [N, 1] =
(Z™)~1g, Z™N,i], where 2™ : N, 1(N*,4) — Npipom(S™(N¥), %) and
(Em)‘1 t Mpsbqm(S™D, T, %) — Ny (DrTég,+) are the suspension iso-
morphisms. The composition °(£™)~1 = & is the Thom isomorphism for
the bundle [F(R*;r) x gl & ™.

On the other hand, if r > 1, then the composition N 2, Cp=Tég 2di hr
@D, T¢g represents, under the Thom-Pontryagin construction, the immer-
sion f+ : pr/Xr — N [7]. By the naturality of adjointness we have that
adjh, o ¥+ ~ adj(hr o S®yt). Hence the map g inducing kA, o S®y*
is the Thom-Pontryagin map for the embedding u-/3, — N x R™, whose
projection is the immersion f.

Let I'"™ be the product of m copies of the unit interval. Then one can eas-
ily show that L[N ,i] = [N x I"™ q], where ¢ : N x I — S™(NT) is the
identification map.

_Using the geometric definition of the Thom isomorphism [1] we see that
(I)h,-[N,I,b] = Qg*[N X Imaq] - [iul'/Ervér]'_

If r = 1, then we get N 2, Cp=Tég <, Co Tég 1= QTég, whered is a
homotopy inverse for d. Since this map corresponds to the immersion f, its
imageis [M,7] O
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Definition (2.5). We can give an interpretation for the group N (B(Zr [ G))
(for r = 1,X; [ G = Q) as follows. We consider pairs (n — M, ), where
n is an (rk)-vector bundle over a closed smooth m-manifold and ¢ :  —
F(R*;r) E>< &g isabundle map. We say that (n; — M, 1) and (12 — Mg, p2)

are bordant if : i) there is a compact smooth (m + 1)-manifold V such that
8V = M, 11 My, ii) there is an (rk)-vector bundle ¥ — V with a bundle
map ¢ : v — F(R*;r) X ¢ »iil) there is an isomorphism h; : n; = 'y
such that Y o3 0 h; = ¢; (i = 1,2), where?; : 77 — 7 is the bundle map
induced by the embedding +; : M; — V. Notice that if two bundle maps
o, 1 — F(]R°°;r)£< ¢z are homotopic then (n — M, p) and (n — M, ')
r

are bordant. The definition of structure using bundle maps is equivalent to
the definition using liftings [2].

We denote by N [Er [ G] the set of bordism classes and by [ — M, ¢] the
equivalence class of a pair. This set is a group under disjoint union.

One can easily show that there is an isomorphism:

Nn(B(Er [G)) = N [Er [G]

given by R
(M, ] = [ (F(R5r) x €5) — M1

THEOREM (2.6). There is an isomorphism

I6(n,k) = Ny yk ® NalGl® DNy (r—11[Er [ Gl

r>2
given by _
If :M — N (IN],lyp = M, 00, [y — pr/Zr,67])
r>2
forn>0,k> 0.

Proof. By 2.2 we have an isomorphism 8}, : Ig(n,k) = N, 1(Cp=Tég).
Ifj : (Cp=Té¢g,0) — (Cp=TEg,*) denotes the inclusion, then we have an
isomorphism

Nn+k(CIR°°TfG) = Nn+k 57 Nn+k(CR°°T§Gy *) )

given by [N, ¥] — ([N],j«[N, ¢]). The spectrum MO satisfies the wedge axiom
so by 2.3 and the Thom isomorphism we have that

N (Cr=Tég, %) = P Ny_r— 1y (F(R™;7) x BG").
r>1 r
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Therefore the theorem follows from 2.4 and 2.5. O

This result is based on the author’s thesis (University of Warwick, 1984). A
different approach which does not use stable homotopy, based on unpublished
work by P. Schweitzer can be found in [6].

3. Bordism of embeddings

Let Eg(n,k) be the set of bordism classes of embedings e : M — N, where
M is a closed smooth n-manifold and N is a closed smooth (# + %)-manifold,
such that the normal bundle v, has a G-structure. The definition of Eg(n, k)
is the same as that of Iz (n, k) but we now take embeddings instead of immer-
sions. By taking disjoint union of embeddings we can make E;(n,k) into a
Zg-module. The structure of E;(n, k) is given by the following

THEOREM (3.1) [14]. The Thom-Pontryagin construction defines an isomor-
phism @y : Eg(n, k) — N1 (Tég). O

THEOREM (3.2) Letf : M — N be a self-tranverse immersion. Then f is bor-
dant to an embedding if and only if; for each r > 2, the bundle vs. — pr /X,
bords.

Proof. By 3.1, the Thom isomorphism and 2.5, we have an isomophism
Eg(n,k) = N, ® Mp[G] given by [g : M — N]+— ([N],[vg — M, D]).

Let X : Eg(n,k) — Ig(n,k) be the homomorphism which maps the bor-
dism class of an embedding to its class in Iz(n,k). Then an immersion is

bordant to an embedding if and only if it belongs to the image of A. Using
the isomorphism in 2.6 we have the following diagram:

Eg(nk) ———  Npup ® Na[G]

A L

Ig(n,k) _— Nn+k © Nn[Gl® @ZNn—(r—l)k[E’fG] ’

where : in the inclusion. The result now follows from the commutativity of
this diagram. 0O

4. Characteristic numbers

Definition (4.1). Let [p — M, ¢] be an element of Ny [Z, [ G]. We de-
fine characteristic numbers for 7 as follows. For each cohomology class ¢ €
Hj(B(E,-fG);Zz) and each partition p of m —j (i.e., a sequence 0 < i; <
... < igsuch thatij + ... +is = m —j) there is associated a Whitney number
(wp(M)p*(c),0(M)), where w,(M) is the product w; (M) ... w; (M), o(M) is
fundamental class of M and  : M — B(Z, [ G) is the map induced by .
Notice that when ¢ = 1 we get the ordinary Stiefel-Whitney numbers of M.
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We associate to-each self-transverse immersion f : M — N the character-
istic numbers of N and of each of the normal bundles vy, v, vpy, ... vy, , (8 <
(n/k) + 1), which we call the characteristic numbers of f'.

THEOREM (4.2) Letf : M — N and g : M' — N’ be self-transverse immer-
sions, then f and g are bordant if and only if their characteristic numbers are
equal.

Proof . By a theorem of Thom [13] the Stiefel-Whitney numbers of a mani-
fold determine its bordism class. The homology groups H.(B(Xr [ G); Zg) are
of finite type so by [4] and 2.5, the characteristic numbers of each
normal bundle determine its bordism class. Therefore the theorem follows
from 2.6. O

Now we will use these characteristic numbers to show that certain im-
mersions are not bordant to oriented immersions and that certain oriented
immersions are not bordant to spin immersions.

Definition (4.3). Consider the antipodal action of Y9 on the sphere S”.

If X is any space then we denote by S* x X x X the quotient space un-
%9 .
der the action (a,xi,x9) — (—a,x9,x1). If X is a smooth manifold then

Sn ;X x X has a smooth structure such that the projection p : S® x X x X
2
— S” )%( X x X is a local diffeomorphism. Let RP™ be the real projective m-
2
space and let e : RP™ — RP™*! be the canonical embeddin,cir. We define an

immersion f : §” x RP™*+1 x RP™ — §" x RP™+1 x RP™+1 by f(a,y,x) =
X9 ;]

[@,y,e(x)]. Similarly if CP™ denotes the coniplex projective m-space and
e/ : CP™ — CP™*! the canonical embedding then we have an immersion
g : S x CPm+l x CP™ — 8" x CP™t! x CP™+1 given by g(a,y’,x') =
2
[a,y, € (x")].
PROPOSITION (4.4) i) For each m > 0, n. > 0, the immersion

f: 8" x RPm+L x RP™ _, 8" x RP™+1 x RP™+1 is self-transverse, with
2

normal bundle v, = S™ x RP™+1 x Ym, Where v, is the canonical real line

bundle over RP™, ii) The manifold of double points is diffeomorphic to

S"™ x RP™ x RP™ and the normal bundle vy, is isomorphic to Sn }3( Ym X Ym.
2

22
Proof . i) The immersion f is the composition of the embedding
id x id x e : S® x RP™*1 x RP™ . §" x RP™+] x RPM+]
with the covering projection

p:S" x RP™L x RPHL _, 87 x RPMHL x R
X2
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Using the differential of the involution on S® x RP™+1 x RP™+1 one can
define a Tp-action on the tangent bundle T'(S® x RP™+1 x RP™+1) making
this bundle into a ¥9-bundle. The morphism of vector bundles

F :T(S" x RP™! x RP™t1y /59 — T(S™ x RP™H! x RP™H)
2

given by F[w] = dp(w) is an isomorphism. Therefore the composition

T(S" x RP™H x RP7H) L, p(S" x RPMHL x RPMH)
2

> T(SM x RP™MHL x RPMHL) /5,

maps an element w to [w]. Since this equivalence relation identifies an ele-
ment of the form (z, a, 8) with (dA(z), 8, @), where A is the antipodal map,
then the images of the tangent spaces over (e, e(x1),x2) and (—a,e(x2),x1) are
in general position. The normal bundle of the embedding e : RP™ — RP™*+
is ym, hence vy = S x RP™+1 % 4

ii) Since the immersion f has no r-tuple points for r > 2, we have that
po/Tg = S" X RP™ x RP™. From the definition of the classifying map for

2

vf, given in 2.1, it is clear that v, = S" XIm Xym O

D2
Since the normal bundle of the embedding e’ : CP™ — CP™*1is the canon-
ical complex line bundle over CP™, we also have the following result.

PROPOSITION (4.5)
i) For each m > 0, n > 0, the immersion g : S® x CP™+1 x CP™ —

Sn x CPm+1 5 CP™+1 s self-transverse, with normal bundle vg = S™ x
2

CP™+1 x A\, where Ap, is the canonical complex line bundle over CP™.

ii) The manifold of double points is diffeomorphic to S® x CP™ x CP™ and
2p
the normal bundle vg, is isomorphic to S™ x Ay x Ay, D
by

In order to calculate the characteristic numbers we need the following re-
sults about the quadratic construction.

We denote by B, the normalized Bar resolution for Zg over X9, there-
fore each B, is a free Zg[X9]-module in one generator e,. Let B™ be the
n-skeleton of B..

THEOREM (4.6) [5]. i) There is a natural isomorphism

H.(S" x X x X;Z9) = H, (B ® H.(X)%2),
2 Zg[zy)

where H,(X)®2 = H.(X;Z9) ® H.(X;Zo) is a chain complex with trivial
boundary and with £9 acting by permuting the factors.
ii) Let {a;}jc be an ordered basis for H.(X; Zg).
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A Zg-basis for H,(B. ® H.(X)®?2)is given by the following elements
Zg(zg)
{er%aj@)aj , r>0jed

eQa;®a Jj<k
22

Definition (4.7). By 4.6 we can define natural functions

qr : Hi(X;Z9) — Hiyr(S" x X x X;Zp), 0<r<n<oo
2

by the composition

i >
Hi(X;Z9)~5Hoi r (B ® H.(X)®%)Hy, (S" x X x X;Zg),
Zglz3] T2

where h}(a) = ergba ®a.
2
Definition (4.8). Let P : H™(X;Zy) — H*"(S® x X x X;Zo) be Steen-
g
rod’s external power operation [12] and let 7 : S*° x X x X — RP* be the

2
projection. We define a transformation

P, : H™(X;Zg) — HZ"t"(S® SZX x X;Zg)

by Pp(a) = n*(w") — P(a), where w = w1(y). Let f : X — Y be a map,
then from the naturality of the power operation we obtain the commutativity
of the following diagram:

Pn

H™(Y;Zy) —— H2mtn(§> szY x Y;Zs)

f‘J l(idzxzfxf)'

Pn
H™(X;Zy) ——— H¥tn(8® X X x X;7p)
‘ 2
Let {ag,a1, - .., } and {ag, a1, . . .} be dual bases for H,(X; Zg) and H* (X ; Zg)
respectively. By 4.6 a basis for H,.(S* X X x X;Zg) is given by {¢$°(a;) |
2
i,j > 0} U {ajp |j < k}, where a;; is the image of eoég)aj ® ap, under the iso-
2
morphism 4.6 i). If
{@(@))" 1i.j > 0} U{a3, i < &}

is the dual basis for H*(S* £< X x X;Zy), then we have the following
2
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PROPOSITION (4.9) [9]. ¢3°(a;)* = Pi(;) O

The relation between the characteristic numbers and the geometric prop-
erties that we need is given by the following

THEOREM (4.10) [4]. Letf : X — Y be a map between spaces of finite type.
The necesary and sufficient condition that [M,¢] € Np(Y) lie in the image of
fe : Nu(X) — Np(Y) is that every characteristic number of [M, o] associated
with an elementin the kernel of f* : H*(Y ; Zo) — H*(X; Z9) mustvanish. O

THEOREM (4.11). The immersions

f 8" x RP™! x RP™ — 8" x RP™! x RP™*! for n > 0 and m > 0,
Xz

are not bordant to immersions with oriented normal bundle.

Proof. By 2.6 we have the following commutative diagram:

ISO(I)(Zm +n+11) = NZm+n+2 @sz_'_,,,_‘,l[SO(l)] @Nz,n+n[22 fSO(l)] ®

P

Ioy(2m+n+11) =2 Namyni2 @ Nomyni1[0(1)] @ Nomya[Se [ O(1)] &

F Fy Fy

To prove the theorem we have to show that the class of f is not in the image
of F. By 4.4, the image of [f] under the isomorphism is

(18" x RP™1 x RP™ 1] [S™ x RP™! x ], [S™ X m ym)).
2

We will see that the class of the bundle S™ x v, x v, is not in the image of
%))

Fy (notice that since S™ is a boundary, [S* x RP™+1 x 4,,] = 0). There is

a Yg-equivariant homotopy equivalence F(R*;2) ~ S, so the homomor-

phism Fg is induced by the map id x Bi x Bi : 8% 5( BSO(1) x BSO(1) —
2

S X BO(l) x BO(1), where i : SO(l) — O(1).

If we take the class Py, (w1(700)™) € HZMt1 (S >< RP® x RP™®), with m >
0, then by (4.8), we have (id ;2 Bi x Bi)* (Pn(wl(yoo)m) P, Bi*(wi(700)™) =
0, since Bi*(w1(Ys0)) = 0. Therefore P, (wi(ys0)™) € ker(id ngi x Bi)*.
Consider the following pull-back diagram:
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S" X Ym X Ym 8% X Ym X ¥m — 5% X Yoo X Yoo
I 203 L2

j in X idxid ‘[ id X jmXJjm j
’ 9 g

S” x RP™ x RP™ S x RP™ x RP™ 8% x RP® x RP™ |

Zg ) g

where i, and j,, are the canonical inclusions. We want to calculate the char-
acteristic number (p*(Pn(w1(700)™)), o (S™ X RP™ x RP™)), where ¢ is the
2

map given by the composition at the bottom. If M is a connected m-manifold

then S” x M x M is also connected, hence
22)

qg :Hm(M;Z2) —>HM+,1(S” E>(2M XM;Zz) = Zo.

Since (in E><2id x id). o gF = q3°, then (inzxzid x id).qp (o(M)) = q° (o(M))
which is a generator by (4.6). Therefore
(*) Gh(o (M) = o(S" x M x M).
Using the definition of ¢, (*) and the naturality of P, (4.8), we have:
(¢™(Pn(w1(700)™)), o (S™ X RP™ x RP™)) =
= ((fn x id x id)*(id ><Jm XJm) (Pr(w1(700)™)), qn (o (RP™)))
= (68 im xim)"Pa(01(100)™) G5 RPP)

(Pn(w1(7m)’") g5’ (c(RP™))) ;
= (qX (e (RP™))*, q3° (o (RP™))) = 1, by 4.9, since w,(7m)™ and o(RP™)
are duals.
The theorem now follows from 4.10. 0O

THEOREM (4.12).The immersions

g : 8" x cp™+l x cpm —»snEx cP™ 1l x CP™! for n>0
2

and m > 0, are not bordant to immersions whose normal bundle has a
Spin (2)-structure.

Proof . By 2.6 we have the following commutative diagram:

Ispingz) (4 + 7+ 2,2) & Nim g4 ® Nimgn 4 2[SPIn2)] ® Nim1n(Z2 [ Spin(2)) ..

ISO(Z)(4m+n +2,2) EN4m+n+4 <) N4m+n+2[SO(2)] © N4m+,,(22f80(2)) ®...
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To prove the theorem we have to show that the class of g is not in the
image of F. By (4.5), the image of [g] under the isomorphism is

(18" x CP™t1 x CP™H1] [S" x CP™F! x Ap], [S™ X Am X Am]).
2 2

We will see that the class of the bundle S x Ap, X Ap is not in the image
Y

of Fg (notice that since S™ is a boundary, [S* x CP™*! x )\,] = 0). The

homomorphism Fy is induced by the map

id x Bp x Bp : S*° x BSpin(2) x BSpin(2) — S X BSO(2) x BSO(2),
) 2] 2
where p : Spin(2) — SO(2).
If we take the class Pn(wg(Meo)™) € H4'H+"(S°°Ex CP*® x CP%),
2
with m > 0, then by (4.8) we have (id@( Bp x Bp)*(Pn(w2(Aeo)™)) =

2
P, (Bp*(wa(Aeo)™)) = 0, since Bp*(wg(Aeo)) = 0. Therefore P, (wo(Aco)™) €
ker(idEx Bp x Bp)*.

2

Consider the following pull-back diagram:

S xAm xAm —— 8% X AnxAm —_— S% x Ao X Aeo
b ] )

J in X idxid ‘{ id X jmXjm j,
2 Zg

S™ x CP™ x CP™ S x CP™ x CP™ S x CP*® x CP* ,
o T g

where i, and j, are the canonical inclusions. Then as in the proof of (4.11)
we have:

((in x id x id)*(id X jm X jm)*(Pa(w2(Aeo)™)), o(S™ x CP™ x CP™))
o P2 P

= (Pn(wa(Am)™), g5 (e(CP™)))

= (@ (c(CP™))*, g2 (c(CP™))) = 1, by (4.9), since wo(An )™ and o(CP™)
are duals.

The theorem now follows from (4.10). O
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