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EQUATIONS FOR_ CURVES IN THEIR JACOBIANS 

BY GEORGE R. KEMPF AND JOSE MUNOZ PORRAS 

In this paper we give equations of curves in their J acobians. Some are 
global and others generalize Fay's trisecant identity. 

1. Abelian varieties 

Let X be an abelian variety with dual abelian variety xv. Let P be a 
Poincare sheaf on X x xv. Let .C be an ample invertible sheaf on X. Then 
W(.C) = 1rxu*( 1r_x.C ® OxxxuP) is a local free coherent sheaf on xv whose 
formation commutes with base extension. 

LEMMA (1). Let <p,e : X --t xv be the honwnwrphism defined by .C. Then 
'Pc W(.C) is naturally isonwrphic to f(X, .C) ®k .c®- 1. 

Proof. (lx x <p,e)*P ~ (1r1 + 1r2)*.C ® 1ri.C®-l 0 1r2.c®-l. Thus 'PcW(.C) is 
naturally isomorphic to 

Now we have a 1r2-isomorphism a : Xx X --t X x X given by (x1,x 2) --t 

(x1 +x2,:X2) which induces an isomorphism 

Hence we get the result. Q.E.D. 
Let H be a finite closed subscheme of X. We have an Oxu-homomorphism 

of locally free coherent sheaves given by evaluation. For all non-negative 
integers we have aclosedsubschemezi(.C,H) of Xv defined by Aia(.C,H) = 0 

Let {3(.C,H) : f(X, .C) ®k Ox --t 1r2• ( 1ri .ClcH,O)+~) be given by restriction. 

LEMMA (2). /3(.C,H) ~ 'Pc (a(.C,H)) ®ox .C. 

Proof. This follows from the proof of Lemma 1 as o-(H x X) = (H, 0) + ~­
Q.E.D. 

We have closed subschemes Ui(L,H) ofX defined by Ai{J(.C,H) = 0. Thus 
we get. 

COROLLARY. <p12
1 ( zi(.C,H)) = Ui(.C,H). 
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2. Jacobians 

Let J be the Jacobian of smooth complete curve C of genus g 2 1. Then 
J is principal polarized by the theta divisor 0 which is only determined up to 
translation. Ifan invertible sheaf .C onJ is algebraically equivalent to Ox(n0) 
then deg .C = ng. We will work only with this type of invertible sheaf. 

Let C c J be the usual embedding determined up to translation. 

LEMMA (4). Ifn 2 2, i: f(J,.C)-. r(C,.Cle) is surjective. 

Proof. As the image of i is a closed vector subspace we need to show that 
its image is dense. Now, OJ(0)le has degree g and .Cle has degree gn. Then 
dimkr(C, .Cle) = g(n - 1) + 1. Let c1, ... , cg beg general points of C, then 
D = c1 + ... +cg= (0+j)-C for some pointj E J. Let .c' = .C (-(0 + j)), ifn 2 
2 D+ (effective divisor in I.Cle) is in the image of f(J, .C') -. f(C, .C'le)- As 

Pico(J) - Pico(C) is an isomorphism, C"" OJ (t(e + ji)), then a general 

section a of .Cle has a divisor of the form D1 + ... + Dn (where the Di are as 
above) which is in the image of f(J, .C)-. r(C, .Cle)- Q.E.D. 

Let deg .C = ng with n 2 2. Let V(.C) = 1r2• (1ri .C 0 PlexJ). Then V(.C) is 
a loclaly free coherent sheaf on J ofrank ng - g + 1 . We have 

COROLLARY (5). Restriction p : W(.C) -. V(.C) is surjective. 

Now let H be a closed finite subscheme of C. Then we have a restriction 

Then a(.C,H) factors through the surjection p. Thus zi(.C, H) is the closed 
subscheme Ai a' ( .C, H) = 0 and this subscheme has been studied extensively 
in [1] in dual form. Hence if 

2g - 2 2 ng - degH 2 g - 1 

Ill 
2g - 2- i, 

then zdegH (.C,H) is a translative of -Wi where wi = C + ... + C i times. 

By the methods of the first section n-lzdegH (.C,H) = udegH(.C,H). This 
generalizes Fay identity with n = 2 and deg H = 3. 

3. Global equations 

Let (X, 0) be a principally polarized abelian variety. Assume that the char­
acteristic of the base field is not two. We will use the same notations as Jaco­
bians. As in the case of Jacobians we will work only with invertible sheaves 
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algebraically equivalent to Ox(n0). Let us observe that the principal polar­
ization defines an isomorphism xv ~ X; with this identification, given an 
invertible sheaf S of degree two on X, the morphism <.ps of§ 1 is a morphism 
<.ps : X-+ X such that ¢s(y) = 2y - 2e where S ~ r{Ox(20). 

THEOREM (6). LetR and S be two invertiblesheves onX of degree 'lJl. Then 
W ( S) ®ox R is generated by its sections. . 

Proof. Let x be a point on X. We need to see that r (X, W ( S) ®ox R) -+ 

W(S) ®ox Rix is surjective. Let M = 1riS ®oxxx P ®oxxx 1r2R. Then we 
need to see that 

r(X X X,M)-+ r (x X {x},Mlxx{x}) 

is surjecture. Now rp8 (y) = 2y - 2e . By taking invariants under X2 it is 
enough to see that 

f(X xx, (Idx, 2)* M)-+ r (x x 2-1(x), (Idx, 2)* Mlxx2-l(x)) 

is surjective. 
We may use our change of coordinates which now preserves X x 2- 1 (x). 

Thus we need to see that 

r(x XX, 1riS ®oxxx 1r2 ( 2*R ®ox s®- 1
) )-r(x X r1(x), samelxx2-1(.x)) 

is surjective. 
By Kiinneth formula, we need to prove the surjectivity of 

r (x,2*R®ox s 0 -
1
) ~ f (2-1(x),2*R®ox s®-C112-Icx)) 

Now this follows from [2]. Q.E.D. 
Now if X is the Jacobian of C and H C C satisfied deg H = 3 then taking 

global sections in the homomorphism o:(S,H) ® 1 : W(S) ®oJ R ~ 1r2 * 

(1riS ®0JxJ PIHxJ) ®oJ R we have the homomorphism 

r (J, W(S) ®oJ R) ~ r (J x J, 1riS ®oJxJ P ®oJxJ 1r2RIJxH) 

which satisfies A 3c5 = 0 equals a translate of -C. Thus -C is the zeroes 
of some sections of T where deg T = 6. We will describe these equations 
explicitly. · 

In the general case, given H a finite subscheme of X and S and R as in the 
theorem, the homomorphism o:( S, H) of§ 1 induces a homomorphism 

o:(S,H) ® 1: W(S) ®ox R-+ 1r2• ( 1riS ®oxxx PIHxX) ®ox R 
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and taking global sections: 

COROLLARY. The closed subscheme zi(S,H) of X coincides with the sub­
scheme defined by the global equations No(S,R,H) = 0. 

Using the results of§ 1 we can compute explicitly the global equations of 
the subschemes Ui(S,H). 

Let us assume that H = {c1, ... ,cn+2} is a finite subscheme of X oflength 
n + 2 given by n + 2 distinct points of X and e E X is a point such that 
2e = C1 + ... + Cn+2· We will assume that S ~ R ~ r_:eOx(20) = Ox(20e), 
With these notations: 

n+2 
8(8,S,H): f(X xX,1riS@P@1r 2S)--+ E9r (X,rfS) 

i=l i 

(where ci EX is such that 2.ci = ci). Taking inverse images with respect to 
<ps we obtain a homomorphism 

f3(S,H) : 71"2 * (1riS) ®ox ( s®-l 0 2*S) --+ 

n+2 
EB ( 1r2 * ( 1ri Slcci,0)+6) ®ox ( s®-l 0 2* S)) 
i=l 

For each ci the homomorphism: 

71"2 * (1riS) ~ f(X,S) ®k Ox! 71"2 * (1riSl(ci,0)+6) 

~ 1r2 * ( 1rirss) ~ f (x, rss) ®k Ox 

is given by f3(s(z)) = s(z + ci), s(z) being a global section of S. 
Let {0a-(z),a-E (Z/2Z)g} be a basis for the vector space f(X,Ox(20)) (for 

example, { 0a-} could be the classical basis of second order theta functions of 
(X, 0)). A basis for the vector space f(X, S) is given by {0a-(z - e)} and the 

n+2 
homomorphism f3(S,H): 1r2 * (1riS)--+ EB1r2 * ( 1rir~s) is given in this basis 

i=l 
by: 

From this discussion and § 1 we obtain 
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THEOREM (7). un+2(S,H) = <p;-1(zn+2(S,H)) is scheme-theoretically de­
fined by the system of global equations: 

Su>.= det (ou,.i(z -e + Cj)) = 0 

for every cf= ( 0">,1' ... , O">,n+2) E [(Z/2Z)B]Cn+2). 

Let us assume now that H = { ( n + 2)c} is a subscheme concentrated at the 
closed point c EX of the form Spec k[t]/tn+2 

L.+ X; that is, His given by a 

ring homomorphism Ox,c !!..!!..,. k[t]/ ~+ 2: 

n+l 
PH (f(z)) = L(~kf)(c)i 

k=O 

~ 1 h1 hk D b . 
where~k= L..J hi! ... hk!D 1 ... Dk, i emgconstantvector 

h I +2h2+ ... +khk=k 
fields on X. (We are assuming now that the base field has characteristic 0). 

THEOREM (8). If H = { ( n+ 2)c} is the subscheme given above, the subscheme 
un+2 ( S, H) is scheme-theoretically defined by the system of global equations: 

det ( ~j0u,_/z + c)) = 0 

for every (c;>.1' ... , O">,n+
2

) E [(Z/2Z)B](n+2). 

Proof. Let us observe that in this case 

1r2• (1riSlcH;O)+a) ~ [r(X, rtS) EB c:f(X, rtS) EB.· .. EB cn+lr(X, r;s)] ®k Ox 

and the homomorphism f3(S,H) is given by: 

/3(0u(z)) = 0(1(z + c) + c~10u(z + c) + ... + c:n+l~n+10(1(z + c) 

Q.E.D. 
In general, if H = H 1 Jl_ ... ll_ Hr and each Hi is a subscheme of X of 

the form Spec k[t]/tni '----+ X, we obtain in the same way a system of global 
equations for un+ 2(S,H). 

The global equations obtained here generalize Fay's trisecant identity and 
Gunning's relations (see [4]). To obtain the classical results of Fay and Gun­
ning in the Jacobian case, we can proceed as follows: 

Let C be a smooth complete curve of genus g ~ 1, J = Pic 0( C) its Jacobian 
variety, Po E Ca closed point and i : C '----+ J the immersion defined by PO· 
We fix a half canonical divisor~ on C (that is, Oc(2~) ~ we the canonical 
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sheaO. These data allow us to determine a canonical polarization 0 c:.....+ J 
with the condition: 0lc =~+PO· 

Letp1, ... ,Pn+2 n+2 distinct points ofC andc1, ... , Cn+2 their images inJ, 
we select a point e E J such that 2e = c1 + ... +cn+2 and define S = OJ(20e) 
and H = {c1, ... ,cn+2} C J. Applying the above results to (J,S,H) we 
obtain the Fay trisecant identity for n = l and the Gunning relations for 
arbitrary n. 
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