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EQUATIONS FOR CURVES IN THEIR JACOBIANS
BY GEORGE R. KEMPF AND JOSE MUNOZ PORRAS

In this paper we give equations of curves in their Jacobians. Some are
global and others generalize Fay’s trisecant identity.

1. Abelian varieties

Let X be an abelian variety with dual abelian variety XV. Let P be a
Poincaré sheaf on X x XV. Let £ be an ample invertible sheaf on X. Then
W(L) = nxv(r%L ® OxxxvP) is a local free coherent sheaf on X¥ whose
formation commutes with base extension.

LEMMA (1). Let ¢y : X — XY be the homomorphism defined by L. Then
ot W (L) is naturally isomorphic to T'(X, L) @ LB~ 1

Proof. (1x x ¢ )*P =~ (11 + 12)*L ® 3 L®~ 1 @ 758~ 1. Thus o2 W (L) is
naturally isomorphic to

mp+ ((m1+ 72)"L 8oy, TLO ) M mp + (71 + 72)"L) @0 L5371,

Now we have a mg-isomorphism o : X x X — X x X given by (x1,x9) —
(x1 + x2,x9) which induces an isomorphism

I'(X, L) ®, Ox ~ mg * (71L) — mg * ((11 + 72)* L) .

Hence we get the result. . : QE.D.
Let H be a finite closed subscheme of X. We have an Oxv-homomorphism

a(ﬁ,H) : W(L) — mxv. (7% L ®0y, xv PlHxXv)

of locally free coherent sheaves given by evaluation. For all non-negative
integers we have a closed subscheme Z*(£, H) of X defined by A’a(L,H) =0

Let (L, H) : T(X, £) ®, Ox — m2+ (1]L|1,0)+4) be given by restriction.

LEMMA (2). B(L,H) = ¢7 (a(L,H)) ®0, L.

Proof. This follows from the proof of Lemma 1 as ¢ (H x X) = (H,0) + A.
QE.D. ;

We have closed subschemes U*(L, H) of X defined by A’3(L, H) = 0. Thus
we get. :

COROLLARY. ¢! (Zi(,C,H)) = UY(L, H).
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2. Jacobians

Let J be the Jacobian of smooth complete curve C of genus g > 1. Then
J is principal polarized by the theta divisor # which is only determined up to
translation. Ifan invertible sheaf £ onJ is algebraically equivalent to Ox (n8)
then deg £ = n€. We will work only with this type of invertible sheaf.

Let C C J be the usual embedding determined up to translation.

LEMMA (4). Ifn > 2,i: T'(J,L) — T(C, L]¢c) is surjective.

Proof. As the image of i is a closed vector subspace we need to show that
its image is dense. Now, O;(#)|c has degree g and L|c has degree gn. Then
dim,IT'(C, Lic) = g(n — 1) + 1. Letcy,...,cg be g general points of C, then
D =cy+...+cg = (0+j)-C for some pointj € J. Let L' = L (—(0 +j)), ifn >
2 D+ (effective divisor in |L|¢) is in the image of T'(J, £L') — T'(C, L'|¢). As

n
Picy(J) — Picy(C) is an isomorphism, £ ~ Oy (Z(ﬂ + ji)> , then a general
i=1

section « of L|¢ has a divisor of the form D + ... + D,, (where the D; are as
above) which is in the image of T'(J, £) — I'(C, L|¢). QE.D.

Let deg £ = nf withn > 2. Let V(L) = mg+ (n]£ ® Plcys). Then V(L) is
aloclaly free coherent sheaf on J of rankng — g + 1. We have

COROLLARY (5). Restriction p : W(L) — V(L) is surjective.

Now let H be a closed finite subscheme of C. Then we have a restriction
& (L,H): V(L) — mgs (7r‘1‘£ ®P]HXJ) .

Then o(L, H) factors through the surjection p. Thus Zi(L, H) is the closed
subscheme A*a’(£,H) = 0 and this subscheme has been studied extensively
in [1] in dual form. Hence if

28—-2>ng—degH >g—1

I
28 —-2—1i,

then ZdegH(L‘,H) is a translative of —W* where Wi = C + ...+ C i times.

By the methods of the first section n~1Z9€8H (¢, H) = Ude8H £ H). This
generalizes Fay identity with n = 2and deg H = 3.

3. Global equations

Let (X, #) be a principally polarized abelian variety. Assume that the char-
acteristic of the base field is not two. We will use the same notations as Jaco-
bians. As in the case of Jacobians we will work only with invertible sheaves
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algebraically equivalent to Ox (nf). Let us observe that the principal polar-
ization defines an isomorphism X? = X; with this identification, given an
invertible sheaf S of degree two on X, the morphism g of §1 is a morphism
ps : X — X such that ¢5(y) = 2y — 2§ where S ~ 77 0x(26).

THEOREM (6). Let R and S be two invertible sheves on X of degree 28 . Then
W(S) ®oy R is generated by its sections.

Proof. Let x be a point on X. We need to see that I'(X, W(S) ®o,, R) —
W(S) ®o, Rl is surjective. Let M = 71S ®0y , P ®0y, ; T3R- Then we
need to see that

I'X xX,M)—T (X x {x},MIxx{x})

is surjecture. Now pg(y) = 2y — 26 . By taking invariants under Xjp it is
enough to see that

I(X x x,(Idx,2)"M) — T (X x 271(x), (Idy, 2)*MlXx2_1(x))

is surjective. .
We may use our change of coordinates which now preserves X x 2~ 1(x).
Thus we need to see that

r(x x X, 718 @0y .y 73 (2*R B0y s®-‘)) _>r(x x 2~ 1(x), same Isz—l(x))

is surjective.
By Kiinneth formula, we need to prove the surjectivity of

r (X, 2°R ®0, s®—1) T (2—1(x),2*R ®0y S®‘1|2_1(x))

Now this follows from [2]. Q.E.D.
Now if X is the Jacobian of C and H C C satisfied deg H = 3 then taking
global sections in the homomorphism «(S,H) ® 1 : W(S) ®g, R — mg *

(WIS ®0y.; PleJ) ®g, R we have the homomorphism

T (J,W(S) @0, R) T (4 x 4,78 ®0,,, P ®0,,, Rlsxx)

which satisfies A36 = 0 equals a translate of —C. Thus —C is the zeroes
of some sections of 7 where deg 7 = 6. We will describe these equations
explicitly. -

In the general case, given H a finite subscheme of X and S and R as in the
theorem, the homomorphism «(S, H) of §1 induces a homomorphism

o(S,H) @ 1:W(S) ®oy R — 73+ (7iS @0y, Pluxx) @0y R



306 GEORGE R. KEMPF AND JOSE MUNOZ PORRAS

and taking global sections:
5(S,R,H) : T(X,W(S)®0, R) — T (X x X,7iS @0y x P ®0y, x "sRlHxx)

COROLLARY. The closed subscheme Zi(S,H ) of X coincides with the sub-
scheme defined by the global equations A*6(S,R,H) = 0.

Using the results of §1 we can compute explicitly the global equations of
the subschemes U*(S,H).
Let us assume that H = {cy,...,c, 2} is a finite subscheme of X of length
n + 2 given by n + 2 distinct points of X and £ € X is a point such that
28 =cy+ ...+ cpy2. We will assume that S ~ R ~ 77 .0x(20) = Ox/(26;).
With these notations:
n+2
§(S,8,H):T(X x X, 1S @ P ® 135) — (PT (X, rg_s)
i=1 '

(where ¢; € X is such that 2¢; = ¢;). Taking inverse images with respect to
s we obtain a homomorphism

B(S,H) : w3+ (m}S) ®o, (s®—1®2*s) -
n+2

D ("2 * (”TS|(ci,0)+A) R0y (S®‘1 ® 2*3))

i=1

For each c¢; the homomorphism:

mg* (1]S) ~ T(X,S)® Ox Loy« (ﬁsl(ci,O)M)
X mg* (ﬁ-rc*iS) ~T (X,Tc*iS) ®p Ox

is given by $(s(2)) = s(z + ¢;), s(z) being a global section of S.

Let {0,(2),0 € (Z/2Z)8} be a basis for the vector space I'(X, Ox(26)) (for
example, {6, } could be the classical basis of second order theta functions of
(X,6)). A basis for the vector space I'(X, S) is given by {,(z — ¢)} and the

n+2
homomorphism 3(S,H) : wg * (n]S) — @wz * (w’{rc*iS) is given in this basis
i=1

by:
B(0s(z2—¢€)) = (bs(z—E+c1), -, 05(2 — § +cni2)) -

From this discussion and §1 we obtain
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THEOREM (7). U"2(S, H) = 5 }(Z"*2(S, H)) is scheme-theoretically de-
fined by the system of global equations:

Sz, = det (9%_ (z—€+ cj)) —0

for every & = (”1\1’ . ,cr,\n+2) € [(Z/ZZ)&’](n+2).

Let us assume now that H = {(n + 2)c} is a subscheme concentrated at the
closed point ¢ € X of the form Spec k[¢]/e"*2 — X; that is, H is given by a

ring homomorphism Oy . PH, k[e]/ert2:

n+l
P (F(2)) = Y _(Apf)(0)e"
k=0
where A} = > ﬁD’;l . .Dzk, D; being constant vector

h1+2ho+...+khy=Fk ‘
fields on X. (We are assuming now that the base field has characteristic 0).

THEOREM (8). IfH = {(n+2)c} is the subscheme given above, the subscheme
U "+2(S ,H) is scheme-theoretically defined by the system of global equations:

det (Ajﬂali(z + c)) =0

for every (o), - - ,a,\n+2) € [(Z/ZZ)g](”"'Z).
Proof . Let us observe that in this case

o (WISI(H;O)+A) o~ [I‘(X, 28) @ el(X,2S) D ... @ 5n+1F(X, T:S)] ®p Ox
and the homomorphism §(S, H) is given by:

B(05(2)) = 0o(z +¢) +eA10,(2+ )+ ...+ " TL1A,  10,(2 + ¢)

Q.E.D.

In general, if H = Hy; 1L ... 1L H, and each H; is a subscheme of X of
the form Spec k[¢]/e" — X, we obtain in the same way a system of global
equations for U +%(S, H).

The global equations obtained here generalize Fay’s trisecant identity and
Gunning’s relations (see [4]). To obtain the classical results of Fay and Gun-
ning in the Jacobian case, we can proceed as follows:

Let C be a smooth complete curve of genusg > 1,J = Pico(C) its Jacobian
variety, po € C a closed point and i : C — J the immersion defined by py.
We fix a half canonical divisor A on C (that is, O¢(2A) =~ w¢ the canonical
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sheaf). These data allow us to determine a canonical polarization @ « J
with the condition: O|¢c = A + py.

Letpi,...,ppt2n+2distinct pointsof C andcy,...,c, o theirimagesind,
we select a point £ € J such that 26 =¢;+...+¢,; 9 and define S = 0,;(26;)
and H = {cj,...,c,42} C J. Applying the above results to (J,S,H) we
obtain the Fay trisecant identity for » = 1 and the Gunning relations for
arbitrary n.
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