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THE SYMPLECTIC ATIYAH-HIRZEBRUCH SPECTRAL
SEQUENCE FOR SPHERES

By STANLEY O. KOCHMAN

1. Introduction

Every group in this paper is localized at the prime two. In [6] we developed
the following efficient inductive method for calculating the stable homotopy
groups of spheres based upon analyzing the Atiyah-Hirzebruch spectral se-
quence:

(1) 'E2, = H,BP ® 1} = mn4+BP.

Since the Hurewicz homomorphism 4 : n.BP — H,BP is a monomorphism,
'Eg, = 0if t # 0 and 'ERS) = h(mBP). Moreover, 7.BP and H.BP are

known. Thus, if w’f is known for & < ¢ then, except for one step, it is algo-
rithmic to deduce the composition series d2" (’E%ﬁ tgryp) forl <r < (¢+1)/2

of wf . The determination of wf from this composition series is accomplished
using Toda brackets. The algorithmic portions of the computation are done
by computer. This procedure was used to compute the first 64 stable stems.

In this paper we carry out the analogous computation based upon analyz-
ing the Atiyah-Hirzebruch spectral sequence:

(2) E2, = H,MSp ® 7} => mn4:MSp.

In this case, hbwever, h:mMSp — H*MSp has kernel Torsion»'n'*MSp and
" h: m.MSp/Torsion — H,MSp is a monomorphism. Thus, EX = h(7pnMSp)
while E2° 5.5 for 1 < s < n is a composition series of Torsion 7, MSp. Thus, if
7r]‘§ and 7, MSp are known for £ < ¢ then the inductive method of [6] can be
used to deduce the composition series d*" (Eg’t_ 4ry1) for 1<r <(24-1)/4 of

wf . In this context the method of [6] is substantially easier because H.MSp
is concentrated in degrees congruent to zero modulo four while H,BP is con-
centrated in even degrees. Thus, the same computational effort can compute
twice as many stable stems. Moreover, we avail ourselves of the straightfor-
ward computer computations from [6, Chapter 4, Section 4] of the cokernel
of the differentials in (1) which originate in the 0 row and have image in
ImJ ® H.BP. In this way, we avoid having to make the analogous computa-
tions in our spectral sequence (2). (Note that we do not make use of any of the
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difficult and subtle computations of [6, Chapters 5, 6 and 7].) Using no ad-
ditional computer computations we use these methods to analyze (2) through
degree 50 and compute the first 49 stable stems.

There are two reasons for developing new methods for computing stable
stems. First, every method for computing stable stems can be analyzed rou-
tinely except for occasional very difficult technical problems. However, a diffi-
cult problem in one method often corresponds to a simple problem in another
method. Thus, a new method of computation will have significant impact in
carrying out further computations. Second, each method of computation of
stable stems has led to substantial new insights into homotopy theory. (See
Ravenel [10] for a summary of the research resulting from the study of the
BP Adams-Novikov spectral sequence.) It is hoped that the study of the sym-
plectic Atiyah-Hirzebruch spectral sequence will also lead to new directions
in homotopy theory.

In Section 2, we determine all differentials which originate on the 0 row
in our spectral sequence. In Section 3, we describe the d?, d8 and d12-
differentials in our range of computations. In Section 4, we give tables of
leaders which follow from the results of Sections 2, 3 and describe the struc-
ture of our spectral sequence through degree 50. In Section 5, we determine
two relations and twenty Toda brackets which follow from our computations.

We assume that the reader is familiar with the methods of [6] for analyzing
the BP Atiyah-Hirzebruch spectral sequence as developed in [6, Chapters
1,2,4] as well as the details of this analysis through degree 50 as summarized
in [6, Appendices 1,2,4]. In addition, we will use the structure of =,MSp
for n < 50 which was determined in [7, Section 8] and is summarized in [8,
. Theorem (2.4)].

Let F bearing spectrum. We will need the analogue of [6, Theorem (1.2.6)]
which defines an action of the Landweber-Novikov operations [1], [9] on the
Atiyah-Hirzebruch spectral sequence for F,.MSp:

(3) E?, = HyMSp ® F; = Fn:MSp.

Each Landweber-Novikov operation s,, € MSp*MSp can be represented by a
map of spectra s,, : S*MSp — MSp which induces a natural map of spectral
sequences:

Sw Er’;,t — E;,-k,t
for 2 < r < co. These s, satsify the Cartan formula, are given by s, ® 1 on
E?2 and are induced on E® by the usual s,, on F,MSp.
’ 2. Differentials originating on the 0 row
In this section, we study the differentials d*" : E{7  — E{"_, ;. Recall

[6, Chapter 4] that all differentials which originate on the 0 row of the BP
spectral sequence (1) land in ImJ ® H,.BP where

ImJ = @,50[Z2an ® Zonan ® ZgPn © ZocmTn © Z2n1n © Z2T}27n]-



ATTYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR SPHERES 319

Here oy, 8,, 7, hasdegree 8n+1, 8n+3, 8n+7, respectively. In Theorem (2.3)
we prove that, in our range of computations, the differentials originating on
the O row in our spectral sequence land in I ® H,.MSp where

I =®,50[Z86n ® Zyc(my 1] C Imd.

In Theorem (2.4) we use the canonical map A : MSp — BP to show how
elements of (Im<J ® H.BP)y,_1 which do not bound in the BP spectral se-
quence determine elements of I ® H,MSp which do not bound in our spectral
sequence. Recall that H,MSp is a polynomial algebra with one generator in
each degree 4n for n > 1. We begin by introducing notation for polynomial
generators of H.MSp which reduce to canonical elements of H,(MSp; Z5) and
determine monomials which give a minimal generating set for the cokernel
of the Hurewicz homomorphism. Let &, € EE(GH&I"S’I for a > 0 denote the
Ray elements [11] where ¢(a) = 4 ifa = 0 and ¢(a) = 0 otherwise. Recall
[4] that for 0 < a < b, the Massey product P(a,b) = (®4,h¢, Pp) is defined
with zero indeterminacy in Eg(a)+sa+8b“5’2 of the classical Adams spectral
sequence (ASS):

(@) Ep* = Exth (Zy, Z3), => mMSp

where 2l is the mod two Steenrod algebra. For 0 < a < b, let v, €

Eé(a)+sa+8b“4’0 be an element such that dg(v,p) = P(e,b) in the ASS. If
0 < a < b then v, is uniquely determined. For n # 2, let vy, denote any

choice of an indecomposable element of Egn’o which survives to E3 in the

ASS. Fora > 0, letgq, € Ege(a)+32a~8,4 denote the unique element such that
P(a,b)4 = ®dqy + qa<I>§ in Eg of the ASS. Let q(a) € ng(a)+lsa_4’3 denote
the unique element such that g(a)2 = h%qa in Eg of the ASS. The ®,, q4 and
g(a) are all infinite cycles.

THEOREM (2.1) [7, Section 4]. There are elements V, p, Vo, Qu of H.MSp
such that:

(a) thedV,p, 2Vy, and 8Qp arein the image of the Hurewicz homomorphism;
() Vi p, Vo, reduces to v, 3, Ugp, respectively, in H.(MSp; Zg);

(¢) h~1(8Qq) contains an element which projects to g(a) in Eo, of the ASS;
(d) each of these elements can be used as a polynomial generator of H,.MSp.

We show next that ). has a simple description in terms of these polyno-
mial generators of H.MSp and the canonical polynomial generators M,, €
Hy,,1_oBP which are denoted as m,n_ in [1, page 111]. Recall [6, Theorem
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(3.2.2)] that the My = 3Mp — M3 and M, = M, — M;M2_, forn > 3 are
d2-cycles in the BP spectral sequence.

LEMMA (2.2). A : H.MSp — H,BP is given by:
(@) M(Qn) = M2, | modulo (2);
(b) ’\*(Vo,zt) = 2M M, . 9 modulo (4);

© A (st,zt) = 9M,, oM,  modulo (4).
Proof . (a) Note that
Image [\ : H.(MSp; Z) — H.(BP; Zy)} = Zo[My | n > 1].
Thus, A.(Qn) = U2 + 24,, where 8U2 + 164, € Image h. Recall [2], [3] that
TBP = Z(9)[Vp | n > 1]

and h (V,) = 2W,, wheretheV, € Tons1_oBP are the Hazewinkel generators.
Write U, = aW,,, 1 + P where « is odd and P, is a decomposable polynomial
in the Wj. Then

8UZ + 16A, — 8a2W2, | = 16aW,,, 1P, + 8P2 + 164, € Image h

and there are no common monomial summands of W), ; P, and P,%. Since
the square of a decomposable element of Image A must be divisible by 186, it

follows that P, is divisible by two. Thus, \.(Qx) = W2, | = M2 ; modulo
two.

(b), (c) Since d*(Vp1) = 2vQq, it follows that d*)\.(Vy 1) = 2uM? =
d*(2MMs). Since /\*(Q%) = M‘I‘, we can define Vj 1 so that A\.(Vy 1) =
2M1Ms. Let ¥y = 1, and for &£ > 1 define ¥, € Hg,_4MSp by &, = n¥;, €
E%k—:i,l = Zgn @ H,MSp. Then Landweber-Novikov operations imply that
d4(Vimn) = 209, ¥, modulo (4v). Thus, d*\, (Viun) = 20hs (¥m) A (¥5)
modulo (4v). Write

Uor = @Qpy1 + Dpyy where Dy isasumof Qpqy - Qg for r > 3.
Since [Image d*] N [Z4(2v) ® H.BP] = d*(2H.BP), it follows that
dii. (szt) = d* (2M;, oM, 9 + 2As ;) modulo (4v) for —1 < s < ¢ where
Asy is a linear combination of Mpy) -+ My for r > 6. Observe that

Ax (U[zstz) € H.(BP;Zy) is annihilated by all dual Steenrod operations and
hence equals zero. Thus, A, (V[ZS],Z‘) = 2M; oM, o + 2As; + 2K modulo

(4) where 2K is a d4-cycle. By [6, Corollary (3.3.12)], K € Z{1,M, My} ®
Z [(M}), (MB), (Mn) | n>38]. Since 4\, (Vigy ) € Image b, it follows
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that 84;; + 8K € Image h and As; + K is divisible by two. Thus,
A (V[Qsl,zt)s s +2M; 9 modulo (4). O

We prove next that all the leading differentials originating on the O row in
our range of computation are d8"+4 (24"Q(2)"+1) = B, and d¥"+8(24n—C(n)+4

Q%""’z) = v,. The proof verifies that these differentials determine the cor-
rect value of EC9) and that no hidden differentials occur. Recall that a leader

L € E] , in the 0 row is an element of least degree such that d” (L) # 0.
THEOREM (2.3). The following results are valid through degree 48.

{a) The leaders on the 0 row are 24"Q(2)"+1 and 24"“0(")+4Qg"+2.

(b) asn+é (24nQ%n+1} =B, and 48n+8 (24n-—C(n)+4Q%n+2) = Yn.

(¢ d¥ ’(Ei"o) C I@;H*MSp forr > 1.

Proof. Let u :S — MSp denote the unit of the spectrum MSp. Observe
that each of the 3, or v, is zero in 7. MSp because the image of its representa-
tive in.Egk+3’p under the map of Adams spectral sequences induced by p isin
such high filtration degree p that the ASS of MSp is zero there. Hence all of
the 3, and v, mustbe boundaries in our spectral sequence. Since they bound
from the 0 row in the BP spectral sequence, they must bound from the 0 row
in our spectral sequence. Recall [6, Corollary (4.3.6)] that in the BP spec-

tral sequence, d8"+4(24M{"+2) = g, and ¢8+8 (24”_C(n)+4M ‘11"+4) = 7n.
Since A« (Qo) = M%, the only possibility for the 3, and v, to bound in our
spectral sequence is given by (b). It remains to show that there are no other
leaders on the 0-row. Assume that L € Ei‘,rn o is a leader of least degree with
d4 (L) = £X # O where ¢ € 75, _; suchthat & ¢ Iy,_; and X € Hy,_4,-MSp.
Under the assumption that this theorem is true we make the following three
observations.

(1) A routine tedious computation, summarized in Table 1, shows that the
kernel of all the differentials determined by these leaders equals E23,.

(2) Landweber-Novikov operations show that £X is a leader.

(3) Either £X is a nonbounding infinite cycle representing an element of
mMSp or £X supports a nonzero differential d%5(¢X) = (Y with ¢ € 7$
but ( ¢ I and Y € H.MSp. Moreover, there is a u > 0 such that L
survives to Ei:}f” with d47+4%(L) = uW where p € I and W € H,MSp.

In the latter case of (3), the correct result is that uW is a nonzero leader
with d¥~4(uW) = (Y. Since vf, = Oforn > 1 and vy, = O for n > 0,
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we must have 4s > 12. Since this theorem is true in degrees less than 4r —
1, the computations of the remainder of this section and of Section 3 can
proceed in these degrees to determine the structure of this spectral sequence
as depicted in the tables of Section 4. From those tables we see that the only
possibilities for (X are: 2vC[20]QyVa, A[lQ]Q%Ql and nA[30]Q¢Q;. Since
A (2vC[20]Q0V3) = 4vC[20]M3M; and d12 (41/0[20]M§M2) = A[14]C[20), it
follows that 20C[20]Q¢Vy can not bound and (X # 2vC[20]Q¢Va. If (X =
A[19]Q2Q, then

W € Span {QyQ1, @3, @3V, V2, V4,Q1, QoVa, Q31

Let s34, denote the Landweber-Novikov operation sy defined in [9] where
I is the sequence whose only nonzero entry is % in the nt* position. Thus,
W € {sa;(W1), s2a,(W2), sag(W3), sa;(Wy)}. Let Cyp1g; denote the map-
ping cone of a representative map of A[19] € 7r‘lg9. In the Atiyah-Hirzebruch
spectral sequence for Cy(19;,(MSp), uW; = d20+4 (L), W = d20+4u (L),
Wy = d20+4(L3) or uWy = d2%+4%(L,). Thus, in our spectral sequence
sa,d?% (Ly), s2A_ld2° (Lg), sagd?®(L3) or sa,d?®(Ly) equals _dZO(L) which
equals A[19]Q%Q1, an impossibility. Thus ¢X # A[19]Q(2)Q1. If ¢X
7A[30]QoQ; then W € Span {1, @), @3, Vo1, @1, @3, @Vo1}. An ar-
gument analogous to the previous one using sa |, sa, and C, 43p; produces
an L or Ly with .s:AldB'2 (Lq) or sAzd?’2 (Lg) equal to_d32(L) which equals
nA[30]QoQ 1, an impossibility. Thus, (X # nA[30]Q¢Q;1- Thus there is no
possibility for (X, and (a), (¢) must be true. O

In Table 1, G¥ = logg[order E,%N 0 /EZ.?V,O]’ The entry in the row with
N = 4k and the column labeled by £ € ”fr—l equals logg[order d4" (Efbg 0)].

In view of the extra factors of two which arise when ).is applied to a mono-
mial in the V4, it follows that AT H.MSp — I ® Hy, BP is neither one-
to-one nor onto. Nevertheless, elements of (ImJ ® H.BP)y,_1 which do not
bound in the BP spectral sequence (even those not in I @ H.BP) determine
elements of I ® H.MSp which do not bound in our spectral sequence. For

I=(i(1),...,i(t) let My = MiV ... M;® and @7 = @V ... Q).
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4N | GN v o P17 B2 12 B3 v3 Bs v4 Bs s
4 3 3

8 6 2 4

12| 13 6 4

16 | 21 6 7 5

3

3

20| 36 14 8 6 5 3

24| 58 16 16 9 10 3

281 91 29 19 156 15 6
20 9 6

36204 57 39 31 35 15 6 3

401291 69 60 40 53 21 20 12 3

44419 106 75 62 70 33 28 15 18 6 4 3

48585 129 106 80 105 45 44 21 30 9

321134 33 30 25

O DML W

TABLE 1: Tmage of the d*" (E%;)

THEOREM (2.4). Let 1 <n, 2<k, 1 <s< tand0 < ebelow.

(@) If anMpMo; does not bound then 20(”)“17n_1V0 or—2®Q does not bound.

(b) If n%y,_ 1M1 My; does not bound and is not homologous to an element of
Zoon, @ H,.BP then either:

(i) 48,-1Vo,1Qr does not bound or

Q) d¥~*(X) = 46, _1V0,1Q where
ABr—4(X) survives to E®¥ and d®r\8r—4(X) # 0.

(o) G) If 2°B,Moy; does not bound then 2¢3,@Qr does not bound.

Gi) If 2¢e+1g9 M MM or does not bound then ZeﬂnQIV[zs_ngt_z does not
bound.

(iii) If BuMsM Mo does not bound and i; is even then either:
(@) 20(”)‘17n_1QoQIV[2s—2] gt—2 does not bound or

(B8) d%(X) =201y, 1Q0QrV]gs-2) 912 where
A8 (X) survives to E¥+2 and d®+2)8 (X) £ 0.

@) () If 2%y, _ 1My does not bound then 2%+, _1@Qr does not bound.

Gi) If 2‘2+17,L_1J\7 sM Moy does not bound then 297n_1QIV[25_2]’2,_2 does
not bound.
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Proof. ForI = (i(1),...,i(¢)) let 7(I) = Agity_1 + -+ Doiy _;-
(a) Observe that d8"+2)g,, o (24”‘1Q%”V0 zk_z) — M}, and
q8n (24n—-lQ%nV0’2k_2) _ ZC(”)_I')’n—lVo,zk—w If

dBn(X) — zc(n)— 17n-—1V0’2k—-2QI

then d% 8" (X) = 0 and A®" (X)) survives to 'Ef’B“Lz. Since s, )(X) =
247-1Q3"V gk modulo E¥4 it follows that ra,qy A\ (X) = 2% M}"+1M,,
modulo ‘E®%+ and d8"+2)8%(X) = a,, M} My;, a contradiction.

(b) Observe that d8n+2)8n+2 (24n-2 (an—lvo,ﬁngMl)) = 2y, 1My
and qén—4 (24"—2 (Q%"‘lvo,l +2Q§n+1)) = 46,_1Vo,. If d®4(X) =
40,-1V9,1Qr then d8r—4)8-4(X) = 0. Assume that X can be chosen so
that A8"(X) is a d8"-cycle. Since srHX) = 24”_2Q%"_1V0,1 modulo Ef’b it
follows that @87+2)87=4(X) = n2y, M My;, a contradiction.

(c) () Since A8"+4(2°6,Q;) = 226, My it follows that 226, Q; can not bound.
i) Since A3+ (226,Q1Vips gy pu2) = 271G, MMMy it follows that
2e 5,1QIV[23_2]72t_2 can not bound.

i) Observe that a8+ (2%-1@3ntly,, oo o) = MM, and
a8 (2-1QE Vo 5 50 2) = 200 Ly 1QoVigs 5y gy 5 If dPM(X) =
2601y, 1QoQrV{gs-2)9t-2 then ddn)8r(X) = 0. Assume that

dBr+2)8n(X) = 0. Since s,y(X) = 27 1Q" !Vi5 2 52 modulo E" it
follows that ro. 1) (/\Bn(X)> = 24”M‘11n+2ﬂ_451\_4t + .- and d®+4)\8n (X)) =

BnMsM;Moj, a contradiction.
(d) () Since A8 (2°y,_1Qr) = 2°y,_1Myy it follows that 2°y,_;Q; can not
bound.

(i) Since A& (2e'yn_1QIV[23_2],2t_z) = g¢+ly M MMy it follows that
28— IQIV[zs—Z],zt—Z can not bound. |
Notes: (1) This theorem covers all cases which arise through degree 50.
(2) In the BP spectral sequence, a1 M ?1\_4 9 is a leader which by this theorem
implies that SUQgV(),l does not bound. However, BJQ%VO’I is not a leader as

d'%(85Q3Vy,1) = 4C[18]Vy 1. In fact, the leader in this bidegree is cQ( V.

3. Differentials originating on higher rows

We determine E® of our spectral sequence in Theorem (3.3) by showing
that d* is multiplication by v. For elements of order two we determine Ker-
nel d® and Image d® in Theorem (3.5) as well as Kernel d!2 and Image d12 in
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Theorem (3.6). The key to these computations is the determination of poly-
nomial generators of H.MSp which are d, d® or d12 cycles modulo two. We
begin by showing that H.MSp has polynomial generators in degrees greater
than four which are d*-cycles.

LEMMA (3.1). (a) Forn > 1, there are choices__g_n of @, modulo decbmpos-
able elements which are d*-cycles. In addition, Vo1 = (Q23) = Q% — Vy 1 isa
d*-cycle. i .

(b) There are choices Vg, of V,p, and Vo, of Vo, for n # 2° which are d*-
cycles.

Proof. Since the cell of MSp of degree 4 is attached to the bottom cell
of MSp of degree 0 by v, it follows that d4 (@) = v. Since \*d* (Vo,1) =

d* (2M1Mp) = 2vM? = X (2vQy) it follows that d* (V) 1) = 2vQ¢ and (Q3)
isadt-cycle. Let I = (0,eq,...,e5) and Vy = V(’;g)’2)V{’(21’2)V£(6) «++. Observe
that:

@ d* (Qu(Q}*@rV{ V) = @DV Va+- 5

i) a* (Vo1(@3)°QveVs) = 20Qu(@D° VTV + -5

(i) d* (VZ,(Q]QVehVs) = wQoVa(Q°QuVyhVy + -5
(iv) ™2 (20QVo,1(QR)°QIVeVy) = AlL4UQR)I*QIVIVy + -5
(v) 40QVE, = 93%;3 € MSpy.. |

Tt follows from (v) that Zs (41/Q0V5" 1) ® Z[@3, Q1. 1® Za[VE,, Voo, ]

can contain no d*-boundaries. Thus, all nonzero d4-boundaries are given by

(i)-(iii). Now (a) and (b) follow from the observation that d4 (Vm) form > 4

and d4 (Qr) for n > 1 are sums of boundaries given in (i)-(iii). 0
In describing the d*, d® and d12_differentials we will use the following

subalgebras of H,.MSp as well as the algebra B defined in Lemma (3.4).
Definition (3.2)

A = z[@) Quinx1].
C = Z[@u|n2>0].

S = Z[Vup Vor |0< a<b, n#2.
S1 = ZIV§, Vap, Vo [0<a<b, (a,b) #(0,1), n # 2.
Se = Z[Vgy, Vap, Val0<a<b, (a,b) #(0,1), n# 2.

T = Z[Vig Ven Vou-1]15>0, n# 2]
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where &, = n[Vy,_1]in Eg;_4, for n # 2t

The following theorem describes Kernel d4 and Image d4 in all cases thereby
determining E®. Let Z,, = Z.

THEOREM (3.3). Assume that d* (£€Qg) = ¢ where £ has order M with 2 <
M < oo

(a) Then ¢ = vE.
(b) If ¢ has order two then

() [Kernel d4|N[Zy € @ H.MSp| = Zy E A ® S and
(i) [Imaged*|N[Z2¢ @ HMSp)=Z3( @A ®S.

(9) If¢ has order four then
() [Kernel d*| N [Zy ¢ ® H.MSp] = [Zy £ ® A® S1]
®Zp/2 (26Ve) ® A ® Sq]
®[Zp/4 (46Q0) ® A ® S and
(i) [Imaged*|n[Zz (@ H.MSp] = [Z4 (@ A®S]®[Z2 ((Qo)®A®S1].
(d) If ¢ has order eight then
(i) [Kernel d4|N[Zy ¢ ® H.MSp] = [Zy € ® A ® Sg]

®[Zpm/2 (ZEV&l) ®A® Sy
®[Zp/a (46Vo1) ®A® S1]® [Zy/s (86Q0) ®A® S] and

(i) [Image d*]n[Zy (@ H.MSp] = [Z3 (R A®S]®[Z4 (2(Q0) ®A® S]]

®[Z2 (4Q0Vo,1) ®A ® Sg].
Proof. These computations follow from Lemma (3.1) and its proof. m]

The next lemma determines polynomial generators (@) forn > 2 of H.MSp
which will be used to describe the d® and d!2-differentials.

LEMMA (3.4). For each n > 2, one can choose an element (@) € H.MSp
differing from @n by a decomposable element such that for any b of degree k
in the ring

—=2
B=Z (@))% Q1 (Qn) In22
and any operation s, of degree k — 4 or k — 8, the class s.,(b) is divisible by 2.
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Proof . Observe that
d*(A[32,3]Q,) = vA[32,3]+#0,
d® (A[32,3Vo1) = O,
d8 (A[32,3]Q3) — 0A[32,3] £ 0,
d*(sA[32,3]Q9) = 0,
d® (0A[32,3]Vy1) = Oand
d8 (aA[32, 3]Q3) 02A[32,3] = 12C[44] # 0.

i

We use induction onn > 2 to show that the (@,) exist. Assume that 2 > 2
and (Qp) exists for £ < n. By Lemma (3.1),

Kernel d* | ZoA[32, 3] ® H.MSp = Z2A[32,3]9 A® S.
Then through degree 2%+3 4 28: Kernel d® | Zy0A[32, 3] ® H.MSp

= ZpoA[32,31{1, Qo, Q1) 23 [(@}), Q1 (@2), -, (Qu-1)] ®S
= Imaged8|ZyA[32,3]® D,

where D, = ZZ{LQ%; Ql) Q%Ql} ® Zz [(Q(z)); 6%: (Q2)7 R (Qn—l)] ® S.
Thus, d8 (A 32, 3]@) = d8 (A[32, 3)6,) with &, € Dy. Define (Qn) = @, + én.

Let degree s, equal 2"+3 — 8 or 2"+3 — 12, Since A[32,3)(Qn) survives to
E2 it follows that s, ({(Qn)) can not contain an odd multiple of @ or Q% as

asummand. Since (@,) is a polynomial of d4-cycles, it follows that s, «Qr)
can not contain an odd multiple of V} ; as a summand. O

We now deterinine Kernel d® and Image d8 for elements of order two.

THEOREM (3.5). Assume that &£ and { both have order two.
(a) If d® (5Q%) = ¢ and d® (£V1) = O then ¢ = ot.

@) If v€ = O then Kernel d8 = Zy ¢{1, @), @1} ® B® S and
Image d® = Zy ¢{1, Qy, Q5 @1, @1} ®B®S.
(i) If v€ # O then Kernel d® = Z9 ¢  B® S and
Image d® = Z3 ({1, Qo, @1} ® B®S.
() Ifd® (¢Vo1) = ¢ and d® (gQg) = 0 then ¢ = ot.

(i) If v€ = O then Kernel d® = Z9 ¢ ® C ® T and
Image d® = Zy ¢ © H.MSp.
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(ii) If vt # Othen Kernel d® = Zo EQAQT and Image d® = Zy (RARS.

(0) Ifd® (¢Vy ) = Cand dB (5 Q%) = ( then one can choose an element (V, 3),

(Van) in H.MSp differing by a decomposable element from Vg 3, Vo,
respectively, defining

(S) =2 [(Vap), (Vaa) |0<a <b, n# 2|

such that:

@) if v€ = 0 then Kernel d® = Z3 €{1, Q9, Q1, Qo@Q1} ® B® (S) and
Image d® = Z3 ({1, Qo, Q1, QQ1} ® B® (S);

(i) if v€ # O then Kernel d® = Z5 ¢{1, @1} ® B® (S) and
Imaged® = Zy ({1, @1} @ B® (S).

Proof. By Lemma (3.4), d® restricted to those elements with represen-
tatives in Z9¢ ® H.MSp is a homomorphism of B-modules. Since the @,
n > 1, are d*-cycles, it is impossible for s.,(@,) to be an odd multiple of Vo,1-

Thus in (b), d8 on Zo¢ @ H,MSp is a map of A-modules. Note that Q% -Vo,1
survives to E8 and d8 (Q% — VO,I) = 0. Thus, ( = of in cases (a) and (b).

In (c), let (V},) denote (V,, ) or (Va,). We establish the existence of the (V;,)
by induction on 4n = deg(Vy) such that if degree s, equals 4n — 4, 4n — 8

then s, ((Vp)) = Omod (2), s, (Vo)) =& (Q% + Vo,l) mod (2), respectively.
Define (Vg 1) =Vp1 + Q%. Observe that

d*(A[141Q) = vA[14] #0,

d® (An4Q}) = d° (A[14]vy,1) =nC[20] # 0,
d*(1C[201Q) = Oand .
d® (1C[200QF) = a® (nC[20vo1) = A[8|C[20] # 0.

Assume that the (V) have been chosen for 2 < deg(V}) < deg(Vy). Let
n' =n — 2ifn is a power of two, and let n’ = n — 1 otherwise. Let
D, = Zy[(V}) | deg(V}) < deg(V,s)]. Then through degree 4n + 13,

Kernel d® | Z33C[20] ® H.MSp = Z3 nC[20]{1, Qo, Q1, Q0&Q1} ® B® Dy
In addition,
Image d® | ZyA[14] ® B® Dp, = Z3 nC[20]{1, @1} ® B ® D».

Since 7C[20]Qp is notad 8_boundary, zero is the only d8-boundary in
Z9onC[20]{Qo, QoR1} ® BR® Dp. Thus, we can find é, € D, such that
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d® (A[14]5,) ='d® (A[14]V,). Define (V) = Vy + b, Since (V) is a d*-

cycle and a d8-cycle modulo two, the s,, ({V;,)) have the desired property. The

computation of Kernel d® and Image d8 in (a), (b), (c) are straightforward.

0o

We now determine Kernel d12 and Image d!2 for the elements of order two
in our range of computation.

THEOREM (3.6).
(a) Assume that vé = 0 with d8 (gQg) =d® (eVp1) =0,

d12 (¢@}) = ¢ and d'2(¢Q1) = 42 (€QoVo1) = 0. Then
Kernel d'% = 2y {1, Qq, QF, @1, Q0Q1} @ B® S and
Imaged'? = Zy ¢{1, (Q%), @1} ®B®S.

(b) Assume that vé = 0 with d8 (EQ%) =d8 (V1) =0,

d12 (gQg) =d12 (¢QoVp,1) = ¢ and d'2 (£Q;) = 0. Then
Kernel d'? = Z3 {1, Q. QF, @1, QQ1, @1} ®B® (S) and
Image d'? = Z5 ({1, (Q), Q1, (@)@1} ® B®S1.

(©) Assume that vE # O with d® (£Q3) = d® (¢V0,1) = 0 and 22 (6Q,) = ¢.
Then Kernel d12 = Zy £{1, Q%} ®B®S and
Imaged® = Z5 ({1, Q3} ®B® S.

(@) Assume that vE = O with d® (£Vy 1) = d® (£QF) = 0,

d'2 (€QoVo,1) = 0 and d'? (¢Qq) = d'2 (EQ3) = (. Then
Kernel d'2 = Z £{1, Qo, @QF, @1, (@5)Q1} ® B® S and
Image d'2 = Zy ({1, Qp, Q1}®B®S.

Proof. These computations are straightforward. |
4. Leaders

Routine computations, using the theorems of Sections 2 and 3, determine
the structure of our spectral sequence through dimension 50. The tables be-
low summarize these computations. They display all the leading differentials
exept:

d® (O‘nVO,l) = n7a and d® (UanVO,l) - 7727n

for n > 1. They also include all the leaders except o, = 7qf; and noy = n2q’5

forn > 1. Each of the leaders d"(XM) = YN with X,Y € 75 and M,N ¢
H.MSp given below determines differentials d”(Xm) = Yn in higher degrees
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using Landweber-Novikov operations. The elements of 7.MSp = E* are
represented by their leaders, those elements of 7. MSp which are annihilated
by all Landweber-Novikov operations. In our range of computations, these
leaders are:

2" & MSpgforn> 0, n=%; € MSp,,
n2=a®3 € MSpsy, 3 € MSps,
R(0,1;0,2) € MSpyyand ®1P9[®1Ve+ B2V3 ] € MSpyr.

Note that the first of these leaders represents all elements which project to
a nonzero element of MSp, /Torsion while the other five leaders represent
Torsion MSp, in our range of computations. The first 49 stable stems are de-
picted by leading differentials d"(XM) = £[n, k] where X € 5, M € H,MSp
and £[n, k] denotes the k¥ element of degree n of order 2, 4, 8, 16 if ¢ equals
A, B, C, D, respectively. If there is only one such element then we denote
¢[n, K] by €[n].

1 2 3 4 5 6 1 8 9 10
U] 2 v+—Qq v2+—1Qy 1o +A[8]+— Vo
2v+—2Qo Alg] nQ3
4v~— 4Q, o ~— Q% 2o ~—n?Vy
20— 2Q% nA[8]— 12Qg
40— 4Q%
80— 8Q3
13 14 15 16 17 18 19

nABlQo ~— Q) wAll4] ~—A[8]Vo, vA[l4] ~—A[14Q
o2 — Q2 A[16) ~— nQ} C[18] ~—20Q3
A[14] ~— 20QVy nA[16] ~— 7%Q} A[19] —
2C[18]) —40@Q}
4C[18] ~—80Q3
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20 21 22 23 24 25
C[20] nQVe 1 n?C[20] +—7A[14]Vp s vC[18]Qp ~—
- 2C[20]~——nA[8]QoVp,1 vA[19]+—A[19]Qy  7A[16]+—nA[16]Vy ;
~—A[8]Qo(Vo,1) cA[16] <—A[16]Vy,;  nC[20]Q¢~—
4C[20] VA[141Q0 vC[20] ~— C[20]Q0

vC[18] ~——C[18]Qy 2vC[20] ~— 2C[20]Qo
nC[20] ~——A[14]Vy; 4vC[20]~— 4C[20]Qo

26 27 28 29 30
~— 2@} A[8]C[20] ~— 7C[20]V, 4
v2C[20] ~— vC[20]Q,

~— n?Q§V§,

vA[19]Qp~— 0QoV§, A[30]
| 72C[20Q2 ~—
V2C[20]Qg ~—
31 32 88 - 34
4vQyV§, =233 A[32,1] ~—1Q} vA[31]
A[31] C[20[Q;  nA[82,1] ~— %@}
nA[30] A[16]QoQ:1 nA[32,2] ~— n2C[201Q}
20 (Q5+2QuQ1Vo,1) Al32,2) ~— 01§ B[34
— oV, A[32,3] ~—13Q)Q1Vo, 2B[34] ~——
~— (1@} vA[30] ~—— A[30]Qo

A[14]C[20] ~—
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35 36 37 38
~— A[31]Qo Al36] 1C[20]Q0Q vA[31]Qy ~—
vA[32, 3] A[32,3]Q0 A[37] A[30]Vp,1
cA[30] A[30(Q3)
~— £1Q}Q: A[8]C[20]QF ~— 1Q] A[14]C[20]Q) ~—
~— 281Q3Q: nA[32,2]Qp +— no1Q]
nA[14]C[20] ~— A[32,2]Qo vA[30]Qo ~—— C[18]Q§Q,
-~ 2uC[2O]Q0VO,1 B[38]

2B[38] ~——

noA[30]
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39 40 41 42
~— A[191Q5Q; A[40,1] ~— nA[16]QV2 7?C[20)Q3Q, ~—
A[39,1] A[32, 3]Q§ 1;C[2O]2 A[14]C[20]V0, 1

A[39,2] A[82,2]Vy nA[40,1] <~—— B[34]Q3
~—281Q0Vo,1 A[40,2] Q) n?C[20}?
A[39,3] A[32,1]Vo,1 nA[40,2] ~— 1@}
nA[14]C[20]Q <— A[8]C[20]Q) nA[37]Qo
~— 71Q$ ‘ C[20) nC[201QoV§
~— 29,Q5 2C[20F ~———nA[32,2Vp;  C[42] ~——
[A[39, 3) } o 2C[42]
+0A[32,1] 4C[42]
nB[38] A[36]Qo
~— vA[32,3]Qq 7A[39,8] ~———— A[32,1]Vy;

nA[39,3]
+70A[32, 1]

} ~— A[37]Q0
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43 44 45 46
~—4vQQ,Vy, A[36]Q% nA[8]QoQ1(Vi2) 7*C[44]
A[31Q; ~—A[8]Vy 2V1 2 nC[44] vA[31]Q}
C[201%Qo nA[16]Q5Q, nA[45,1] ~——
~— A[39,2]Q Cl44] uC[18]Q(3,Q1 nA[45,2] ~——
2C[44] vA[30]Q3 nD[45]
~— 1A[30]QqVo,1 4C[44] sA[30]Q] n?C[2012Qp ~—

nB[38]Q «—A[s]cpom?,vo,1 A[45,1]

B[34]QoVo,1

~— 71QVo,1 D[45] 2C[18) (Q4Vo,2 + Q4Vo,1)
~—271QVo,1 2D[45] 4C[18] (Q)Vo,2 + @4Vo,1)
~— 471Q4Vo,1 4D[45] B[38]Q5

8D[45] C[42]Qq

noA[32, 1]Qo
~—nA[32,1]Q}

+nA[39, 3]Qo
A[45,2]

n? (QuR1(Q2) + Qg(Qg))
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47 48 49 50 51

~—A[39,1]Q% nA[4T]~— nA[40,2)V1  2C[18]Q3Q1Vo,1~—4vQIQ 1V,

vCl44] C[44]Q)  8D[45]Qo ~—2B[38]Q]
~—A[39,3Vo1  nB[4T]~—A[45,2]Qo
~—A[39,2]Vo 1 1C[2012Q% ~—72C[201Q5Q 1 (Vo,1)
~— A[31]Q4 vD[45] ~— D[45]Qq

~— 9A[14]C[20]Q3 2vD[45]«— 2D[45]Q,

»2D[45] A[36]Q

A[4T] A[40,2]Vp 1

B[47] C[2012V) 1

2B[47) 2C[2012V 4
R(0,1;0,2) VA[45, 1}— A[45, 1]Qo

= nA[30]Q0Q)

01 09[® Vg + P2VE ]
= $1Qo¥1V1,2

5. Relations and Toda brackets

In our spectral sequence all d4-differentials are given by multiplication by
v while multiplication by ¢ determines certain d®-differentials. Thus, the
analysis of our spectral sequence determines the relations in 7 given by
multiplication by v and o. We give two new relations in Theorem (5.1) which
are not readily discernible from the BP spectral sequence or the classical
Adams spectral sequence. We then generalize two theorems from [6, Chapter
2, Section 4] which show how differentials in an Atiyah-Hirzebruch spectral
sequence determine Toda brackets in 5. We apply these theorems in The-
orem (5.6) to give Toda bracket decompositions of elements of 75 which are
defined as images of d®, d!2 and d!6-differentials.

THEOREM (5.1). (a) can = 5y, forn > 0.
(b) cA[39,2] = 0.

Proof. (a) This relation is a consequence of Theorem (3.5)(b). It can also
be inferred from the Adams-Novikov spectral sequence.



336 STANLEY O. KOCHMAN

(b) Since d® (A[32, 2]Qg) =d8 (A[32,2]V) 1) = A[39,2], it follows that
A[39,2]Q2 ~ A[39,2]V, ; in ES 5,. Thus, cA[39,2] = d8 (A[39, 2] (Qg + Vo’l))
= 0and cA[39,2] € v - 135 = 0. 0

The following theorem is a generalization of [6, Theorem (2.4.4)(b),(c)].
Let (B,w) be a ring spectrum. Let ¢ : S™ — B and 1 : S — B be two maps
whose product w o (¢ A 9) is null-homotopic. We use the notation By, to
denote a map By, DmAn+l _, B such that

(?B¢¢ = qu.l/, | SMHR — o (d) A ).

THEOREM (5.2). Let B be a ring spectrum with torsion free homology. Con-
sider the Atiyah-Hirzebruch spectral sequence:

(5) E;,=H,B® 1} = mpyB.

Assume that o, B, £ € 73 and X, Y € H,B satisfy the following conditions:
i a-8=0;
(i) a-£=0;

(i) d5%(Y) = B;

(iv) d"(X) = aY.
Then (£, a, ) isdefined, ¢X survives to E™t5 and (£, a, 8) contains an element
which projects to dT+3(¢X).

Proof. By (i) and (i), (£, «,f) is defined. We can represent X, Y by
X, Y, respectively, such that Y = g and X = (¢ AY)UB,g. Then we can
represent X by R = (£ AX)U (Bgo AY) with 8R = (£ AB,g) U (Beo A B).
Thus ¢X survives to E™+* and R projects to d™+5(£X). Moreover,

SR € (¢, o, B).

Theorem (5.2) gives Toda bracket decompositions of all elements¢ €
which are defined as ¢ = d8 (¢Vp ;) = d8 (5Qg) or ¢ = d12(¢Q;) or ¢
a1 (63y).

COROLLARY (5.3). (a) Assume that fQ% survives to E® and d8 (&Q(z)) =

d® (Vo 1) = . Then 2v€ = Oand (v, 2v,£) contains an element which projects
to (.

I st

(b) Assume that v€ = 0. Then £Q; survives to E'2 and (o, v, &) contains an
element which projects to d'? (£Q,).

(c) Assume that o€ = 0. Then 561 survives to E'2 and (v,0,€) contains an
element which survives to d12 ({Q—l) .

The following theorem is a generalization of [6, Theorem (2.4.5)].
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THEOREM (5.4). Consider the Atiyah—Hirzebruch spectral sequence (5) of
a spectrum B with torsion free homology. Assume that «, 8, v, £ € 7rf and
X, Y, Z € H,B satisfy the following conditions:

@) (7,€, o, B) is defined;

(i) d5(Y) =6;

(ii) d"(X) = aY;

(iv) d¥(Z) = .
Then ¢XZ survives to ETt5tt and (v, ¢, a, §) contains an element which projects
to dTH5+ (¢XZ).

Proof. If (¢, 1, ) contains 0, let B< $0N) denotes a map with domain a disc
and 8B(¢,¢,)\) € {(¢,%,)). Represent X, Y, Zby X, Y, Z, respectively, such
that 0Y = §, 0Z = v and 0X = (a« AY) UB,3. Then we can represent £XZ
by

R=(ZAEAX)UBog AX)U(ZABgoa AY)U By oy AY)U(ZABe )

Since OR = (v A B¢ o,8)) U (Boyg A Bop) U (Biy,g,a) A B) € (1,6, @, B), it fol-
lows that ¢XZ survives to E"+5+¢ and (v,¢, a, f) contains an element which
projects to d"+5tt(¢X2Z). m]

In our spectral sequence, Theorem (5.4) gives Toda bracket decomposi-
tions of all elements ¢ € 75 which are defined as ¢ = d'2(¢QyVp ;) or

¢ = d(&@) Vo) or ¢ = d'(¢QoQy) or ¢ = d® (¢(@})Qy) or ¢ =
a8 (6QuQ, ) or ¢ =a® (£(@})Q, ). |
COROLLARY (5.5). (a) Assume that (v, 2v,£, v) is defined. Then QqVp, 1 sur-

vives to E'% and (v,2v,€,v) contains an element which projects tod 12 (¢ QoVo, 1)-
(b) Assume that (v,2v,€,0) is defined. Then ¢ (Q%)Vo,l survives to E18 and

(v,2v,€, o) contains an element which projects to d 16 (5 (Q%)V(),l).

(c) Assume that (o,v,€,v) is defined. Then £Q(Q) survives to E 16 gnd
(0,v,&,v) contains an element which projects to d18 (£Q(Q).
(d) Assume that (o,v,£,0) is defined. Then ¢ (Q%)Ql survives to E20 and

(0,v,€,0) contains an element which projects to d20 (E (Q%)Ql).

(e) Assume that (v,0,¢,v) is defined. Then £QyQ; survives to E'® and
(v,0,€,v) contains an element which projects to d16 (5 Qo 1).

(f) Assume that {v,0,£,0) is defined. Then ¢ (Q%)Ql survives to E2° and
(v,0,€,0) contains an element which projects to d20 (5 (Qg)@l).

The following Toda brackets follow from Corollaries (5.3), (56.5) and [6,
Theorem (2.4.2)] which we denote as (2.4.2) below.



338

STANLEY O. KOCHMAN

THEOREM (5.6). The following Toda brackets are defined in 5 and contain
the indicated elements.

TODA BRACKET REF. TODA BRACKET REF.
All4] € 2v,v,2v,v) (5.5)(a) [A[39,2] € (v,21,A[32,2]) (5.3)(a)
nA[14] € (v,2v,A[8]) (5.3)(a) | A[39,8] € (v,21,A[32,1])  (5.3)(a)
A[19] € (0,A[8],v) (2.4.2) | 2C[2012 € (v,2v,7A[32,2]) (5.3)(a)
2C[20] € (v, 2v,v3,v) (5.5)(a) | A/45,1]) € (v,2v,B[34],v) (5.5)(a)
nC[20] € (v, 2v A[14]) (5.3)(a) | nC[44] € (o, vA[31],v) (2.4.2
nA[30] € (o, v,A[16],v) (5.5)(c) | nA[45,1] € (v,21,A[39,38]) (5.3)(a)
A[31] € (v, 0, C[20]) (5.3)(c) | nA[45,2] € (v,2v,A[39,2]) (5.3)(a)
nA[32,2] € (v, 2v, n2C[20],v) (5.5)(a) | A[47] € (v,0,A[36]) (5.3)(c)
A[36] € (v, 0,nC[20], ) (5.5)(e) | B[47] € (v, 2v, C[20]?) (5.3)(a)
A[37] € (v, 2v,A[30]) (5.3)(a) | n2D[45] € (v, 7, A[36]) (5.3)(c)
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