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EXPLICIT BRAUER INDUCTION AND SHINTANI DESCENT 

BYVICTORP. SNAITH* 

I. Explicit Brauer Induction 

In this section we shall recall the Explicit Brauer Induction homomor­
phism, a0 . The first Explicit Brauer Induction map appeared in [9]. There 
are now several Explicit Brauer Induction maps ([1], [9], [15]), which are all 
related [3] and may be constructed either algebraically or topologically. The 
topological formula is given in (1.11) and the algebraic formula in (1.20). 

For related literature the reader is referred to ([1], [3], [9], [10], [11], [12], 
[13], [14], [15], [16]). 

We must begin with some definitions. 

Definition (1.1). Let G be a finite group. LetR+(G) denote the free abelian 
group on G-conjugacy classes of characters, t.p : H -+ C*, where H ::; G. We 
shall denote this character by (H, ip) and its G-conjugacy class by (H, <.p)° E 
R+(G). 

If J ~ G we define a restriction honwnwrphism 

(1.2) 

by the double coset formula 

(1.3) Relj((H, ip)°) = 'J.:,zEJ\GjH(J nzHz-1, (z- 1)*(ip)l 

where (z- 1)*(<.p)(u) = <p(z-1)uz) EC*·. 
If 1r : J -+ G is a surjection then we define 

(1.4) 1r* : R+(G)-+ R+(J) 

by 1r*((H, t.p)0 ) = (1r-1(H), t.p1rl. 
By means of(l.3)-(1.4) wemaydefinef*: R+(G)-+ R+(J) foranyf: J-+ 

G by factorizing f as f : J -+ im(f) C G and setting 

(1.5) f* = 1r* Res?in(f) : R+(G)-+ R+(im(f))-+ R+(J). 

One may also define an induction map, Indy : R+(J) -+ R+(G), and a 
product which makes R+(G) into a ring-valued functor satisfyingFrobenius 
reciprocity. 

Define a (surjective) homomorphism 

(1.6) ba: R+(G)-+ R(G) by 
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ba((H, r.p)°) = Indj}(r.p). 

This is a natural ring homorphism. 

(1.7). The objective of this section is to describe the construction of a 
natural homomorphism 

aa : R(G)--+ R+(G) 

such that baaa = 1. This amounts to a canonical form for Brauer induction. 
The first canonical form was given in [9]. The method was based upon the 

group action ofG on U(n)/NTn via a unitary representation, p: G--+ U(n). 
The details, together with several applications, are given at length in [10] and 
further elaborated upoil in [11]. The topological procedure of [9] automati­
cally gives a functional association of an element of R+(G) to a representa­
tion. Furthermore, the simplicity of the group action in the one-dimensional 
case ensures that a one-dimensional representation, r.p : G --+ C*, is associ­
ated with (G, r.p)° E R+(G). In this section we will follow the method, due to 
R. Boltje [1], which starts by taking these two properties as axioms. 

(1.8) Axioms for aa 

(i) For H ::S G the following diagram commutes. 

R(G) ~R+(G) 

Resi j ]~•i 
R(H) ~R+(H) 

(ii) Let p: G--+ GLn(C) be a representation and suppose that 

then a(G,cp)G = (p, r.p)a (the Schur inner product) for each (H, r.p)° such that 
H=G. 

THEOREM (1.9). There is at nwst one family of homonwrphims, a0 , satis­
fying the axioms of (1.8). 

(1.10). Symond's description of a0 [16]. 

In [16] one finds the following topological construction, which is similar 
in flavour to the construction of [9]. Given v : G --+ GL(V) we may let G 
act, via v on P(V), the projective space of V. Triangulate P(V) so that G 
acts simplicially on P(V). For each simplex, u, of G\P(V) let H(u) denote 
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the stabiliser of a simplex, a-, chosen above u. The points ofu correspond to 
lines in V which are preserved by H ( u). Let 1.p a : H ( u) -+ C* be the resulting 
one-dimensional representation, given by H(u) acting on one of these lines. 

Symonds defines [16] 

THEOREM (1.12). In the notation of (1.8), 

La(v) = aa(v) 

for all representations, v E R(G). 

Definition (1.13) Let M be a finite partially ordered set (a poset). The 
Mobius function of M is an integer-valued function, µ, on M x M which is 
defined in the following manner. A chain of length i in M is a totally ordered 
subset of elements of M, 

(1.14) 

We define µA,B, for A,B EM, by 

( ) { µAB . 
· l.l

5 
= Ei(-li#{chains oflength i with (Mo= A, Mi= Bin (1.14)}. 

(1.16). The Poset Ma 

Let G be any finite group and denote by Ma the set of characters on sub­
groups, (H, cp), where H ~ G and <.p: H-+ C*. Ma is aposet ifwe define the 
partial ordering by · 

(1.17) 
{ 

(H,cp) ~ (H',cp') 
if and only if 

H ~ H' and Res~' (1.p') = 1.p. 

In addition, G acts on Ma by the formula 

(1.18) g(H, 1.p) = (gHg- 1, (g- 1)*(1.p))(g E G) 

where (g- 1)*(cp)(u) = 1.p(g-1ug). 
Note that R+(G) is the free abelian group on the elements of the orbit 

space, Ma/G. 

(1.19). The formula for aa in terms of Mobius functions. 

Let µMa denote the Mobius function for the poset, Ma, of pairs, (H,cp), 
of (1.16). 
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THEOREM (1.20). The homonwrphism 

aa: R(G)-+ R+(G) 

of (1.9) is given by the formula 

aa(P) = #(G)- 1 L 
(H, ip) ~ (.H', ip') 

in Ma 

#(H)µ~~),(H',i.p') (1.p', ResZ.,(p))(H, 1.p)°. 

2. Irreducible representation of GL2Fq 

In this section we shall recall the description of all the irreducible repre­
sentations of GL2Fq, All such irreducible representations are well-known. 
In fact, all the irreducible representations of GLnFq were described in ([5]; 
see also [7] Chapter IV) for all values of n and q. However, for completeness 
and convenience, we shall recall here the explicit construction of the irre­
ducible representations of GL2Fq, We shall begin with the cuspidal or Weil 
representations which are the most difficult ones to construct. These repre­
sentations are originally due to A. Weil. The construction works in greater 
generality than we will need. For example, in ([6], p.122) the Weil represen­
tation is described for the case in which Fq is replaced by a local field. 

(2.1). Let F be any field. Define te Borel subgroup, B::; GL2F, to be 

B = {X E GL2Flx = ( ~ ! ) } 
Define the unitriangular subgroup, U ::; B, to be 

Define w E SL2F to be given by 

The Bruhat decomposition of GL2F takes the form 

This is elementary in the case of 2 x 2 matrices. 

PROPOSITION (2.2) Let F be any field then GL2F is generated by matrices of 
the form (a, o E F*, u E F) 
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subject to the follwing relations: 

(ii) 

(iii) 

( ~ ul ) ( ~ ui2 ) = ( ~ u1 i u2 ) , 

w ( ~ ~ ) w-
1 

= ( ~ ~ ) , 

(iv) w ( ~ ~ ) w = ( -~-l _ou ) ( ~ -t ) w ( ~ -u-1 ) 
1 ' 

and (v) w4 = 1. 

(2.3). We will now discuss the (q - 1)-dimensional complex vector space 
upon which we are going to inflict the Weil representation of GL2Fq. We will 
require some preliminary notation. 

Let Fq2 denote the field oforder q2 so that the Galois group, G(Fq2/Fq), is 
cyclic of order two generated by the Frobenius automorphism 

F: Fq2 -+Fq2 

given by F(z) = zq for all z E Fq2• 

In order to construct a Weil representation we shall need a character of the 
form f 

e: F*2 -+ C* 
q 

which we shall generally assume to be distinct from its conjugate by the 
Frobenius, 0 -:/-F*(0) where F*(0)(z) = 0(F(z)). 

Let 1-{ denote the following complex vector space 

1i = {t: F;2-+ Clf(t- 1x) = 0(t)f(x) if N(t) = 1} 

where N = N Fq2 /Fq : F; 2 -+ F; is the norm. 

Let H denote the abelian subgroup which consists of matrices whose diag­
onal entries are equal. Hence there is an isomorphism of the form 

~ * , :H-+Fq xFq 

given by 
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Define the additive character of F q to be the homomorphism 

(2.4) 

by the formula (char(Fq) = p) 

'PFq(Y) = exp(27ri(TraceFq/Fp(y))/p). 

Hence we may obtain a one-dimensional representation of H, denoted by 
0 0 '11, by the composition 

By induction we obtain a ( q - l )-dimensional induced representation of B, 
Indi(e 0 w). We may identify the underlying vector space of this as a map­
ping space in the following manner. There is an isomorphism 

,\ : W ~ Indi(e 0 '11) 

where 

W = {g: B--+ Clg(X ( ~ ! )i = 0(u)W(fJ/u)g(X)} 

where f denotes the complex conjugate function. Explicitly,\ is given by 

,\(g) = L X ©g(X) E C[B] ©C[H] Ce@w 
XEB/H 

where Ce@IJi denotes the complex numbers with H-action via 0 0 '11. ,\ is 
well-defined since 

X ( ~ ! ) ® g(X ( ~ n ) 
= X ® 0(a)'V(fJ!a)gX ( ~ ! ) ) 
= X ©g(X). 

Define an action of B on W by the formula (g E W, X E B) 

PROPOSITION (2.5). With this B-action on W 
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is an isomorphism of B-representations. 

(2.6). Since the matrices of the type 

form a set of coset representatives for B/H we may define an isomorphism 
of vector spaces 

A:1i.--+W 

by the formula, where b E F*2 and NF 
2
/F. (b) = o:- 1, 

q q q 

(2.7) A(h)(( ~ ~ )) = 0(b)h(b). 

Notice that (2.7) is well-defined because, if NFq
2
/Fq(t) = 1, 

0(tb)h(tb) = 0(t)0(b)0(t)- 1h(b). 

PROPOSITION (2.8). Define a B-action on 1i. by the formula 

where N = NFq
2
/Fq is the norm and N(>.) = o:8- 1. Then, with this B-action, 

A yields an isomorphism of B-representations 

A: 1i. ~ Indi(e@ w). 

Remark (2.9). From (2.8) it is not difficult to show that the B-action on 1i. 
is given by 

where N(>..) = a and 

( ( ~ ~ ) h)(x) = \Jl(uN(x))h(x), 

<( ~ ~) h)(x) = h(AX)e(>.), 

( ( ~ ~ ) h)(x) = h(xF(µ)- 10(µ) 

whereN(µ) = 8 since, ifN(>..) = s-1, 

0(8)h(>.x)0(>.) = 0(8- 1)0(F(8)- 1)h(:lx)0(>..) 

= h(xF(µ)- 1)0(µ). 
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These formulae coincide with those of ([6] p.122). 

Definition (2.10). The Fourier Transform on 1{. 

In the no!_ation of (2.1) and (2.3) suppose that f E 1{. We define the Fourier 
transform, f E 1i, off by means of the formula 

(2.12) f(z) = -q- 1I;yEF* f(y)wF'. (yF(z) + zF(y)) 
q2 q 

where w Fq is the additive character of (2.4). 

LEMMA (2.12) The map which sends f E 1{ to its Fourier transform is a 
C-linear endonwrphism of order four. 

Definition (2.13). Let 0 : F*2 -+ C* be a non-trivial character, as in (2.3). 
q 

The following three formulae characterise the Weil representation associated 
toe 

(i) 
(r(0)(w)f)(x) = f(x) (f E 1-l, x E F*2 ) 

q 

where w is as in (2.1), (ii) 

and 

( iii) (r(0) ( ~ ~ ) f)(x) = 0(/3){(/Jx) 

where a E Fq,/3 E Fq2 andNFq
2
/Fq(/3) = a. 

THEOREM (2.14). The formulae of (2.13) characterise a unique, well-defined 
(q - 1)-dimensional, irreducible representation, r(0), of GL2Fq. 

(2.15). We shall now construct the remaining irreducible representations 
of GL2 Fq, Suppose that we are given characters of the form 

X,Xl,X2: F;-+ C* 

then we clearly have a one-dimensional representation, L(x), given by 

(2.16) 

If x 1 and x2 are distinct define 

Infi(x1 ® x2) : B-+ C* 
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by inflating x1 ® x2 from the diagonal torus, T, to the Borel subgroup, B . 
. That is 

Define a (q + 1)-dimensional representation, R(x1, x2), by 

(2.17) 

When x = Xl = x2 we have 

so that there is a canonical surjection of the form 

Therefore we may define a q-dimensional representation, S(x), by means 
of the following short exact sequence of representations (which is split, by 
semisimplicity) 

(2.18) GL2F. B 0 -+ S(x) -+ IndB q (InfT(X ® x)) -+ L(x) -+ 0. 

THEOREM (2.19). A comp"lete list of all the irreducib"le representations of 
GL2Fq is given by_ 

(i) L(x) of (2.16) for x: Fq-+ C*, 

(ii) S(x) of (2.18) for x: Fq-+ C*, 

(iii) R(x 1, x2) = R(x2, x 1) of (2.17) for any pair of distinct characters x 1, x2 : 
F*-+ C* and q 

(iv) r(0) = r(F*(0)) of (2.13) for any character e : F* 2 -+ C* which is 
q 

distinct from its Frobenius conjugate, F* ( 0 ). 

(2.20). For future use let us record the conjugacy class information con­
cerning GL2Fq, 

The conjugacy class of a matrix, X E GL2Fq is determined by its minimal 
polynomial. The minimal polinomial of X must have degree one or two. The 
representatives of each conjugacy class, together with their minimal polyno­
mial and the number of elements within each class, are tabulated below. 
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(2.21) Conjugacy Classes in GL2Fq 

Type Minimal Number 
Polynomial in Class 

I 
(t - a)(t - /3) 

q(q+ 1) 
a# /3 E F*q 

II 
(t- a) q2-1 
a EF* 

III 
(t- a) 

1 
a EF* 

t - (x + F(x))t + xF(x) u -xF(x) ) q2-q IV F(x) # x E F* 2 x+F(x) 

THEOREM (2.22). With the notation of (2.21) and (2.19) the character values 
of the irreducible representations of GL 2Fq are given by the following tahle: 

Type L(x) R(x1, X2) S(x) r(0) 
I x( a/3) x1(a)X2(,8) + x2(o)x1(,8) x( a/3) 0 
II x(a)~ x1(a)X2(0) 0 -0(o) 
III x(at (q+ l)x1(o)x2(0) qx(a? (q - 1)0(o) 
IV x(N(x)) 0 -x(N(x)) -{0(x) + 0(F(x))} 

where N = NFq2/Fq denotes the norm. 

3. The Shintani correspondence 

In this section we shall describe the Shintani correspondence for GL2Fq 
(see (3.11)) in terms of the maximal self-normalising elements of MaL 2Fq 
which appear in the Explicit Brauer Induction formula for the irreducible 
representation under discussion. Then main result is to be found in (3.25). 

(3.1). Maximal Pairs in MaL 2Fq 

AB in (1.16)-(1.17) let MaL 2Fq denote the poset of pairs (J, cp) with J :S 
GL2Fq and <.p: J-+ C*. From (1.20), ifv E R(GL2Fq) and (J, cp) is maximal 
in MaL 2Fq' then the coefficient of (J, cp)°L2Fq in aaL 2Fq(v) is given by 

(3.2) 

Here 

{ 
{multiplicity of (J, cp)°L2Fq in aaL}Fq(v)} 

= [NaL2Fq(J, <.p) : JJ-1 < <.p, ResJL2 q (v) > . 

In other words, it is easy to calculate the multiplicity of maximal pairs, 
(J, cp)°L2Fq, in aaL 2Fq(v). For this reason we will now introduce four types 
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of maximal pairs in M GL2F q. Type A: ( GL2F q, X · det) for X : Fq -+ C*. Type 
B: (H, >.. ® µ) whereµ : Fq -+ C* is non-trivial and >.. : Fq -+ C* is any 
homomorphism. Here 

(
z y) .. °' ,\: H = { O z E GL2Fq} -=i-F; x Fq 

is as in (2.3). Type C: (B,Inf¥(>..1 ® .\2)), in the notation of (2.17), where 
,\ 1, .\2: Fq -+ C are distinct. Type D: (F;2 , p) where p and F* (p) are distinct. 

Here we consider F*2 to be the cyclic subgroup generated by the matrix 
q 

(3.3) ( 
0 -xF(x) ) 
1 x+F(x) 

of (2.21) where x E F*2 is a generator. Up to conjugation this subgroup is 
q 

independent of the choice of x. On this subgroup the Frobenius map, F E 
G(Fq2/Fq), corresponds to conjugation by the matrix 

(3.4) f _ ( 1 x + F(x) ) 
- 0 -1 · 

This is seen as follows. With respect to the Fq-basis, {1,x} of Fq2 multiplica­
tion by xis represented by the matrix of (3.3). However 

( 
1 x+F(x)) ( 0 -xF(x) ) ( 1 x+F(x)) 
0 -1 1 x+F(x) 0 -1 

= ( x + F(x) -xF(x) + (x + F(x)) 2 
). ( 1 x + F(x) ) 

· -1 -x-F(x) 0 -1 

_ ( x+F(x) xF(x) ) 
- -1 0 

which represents multiplication by F(x) with respect to this basis. 

PROPOSITION (3.5). Each of the pairs (J, <p) E MaL
2
Fq' listed in types A/D 

of (3.1), is maximal. In addition, for each of types A/D, 

NaL2Fq(J,<p) = J. 

Proof. The result is obvious for type A, (GL2Fq, x • det). 
From the classification of maximal subgroups of SL2Fq, which is given in 

([4] p.286, §§262), it is straightforward to see that any proper subgroup of 
GL2Fq which contains H must lie in B = N aL2FqH. However, 
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Hence the action of this matrix on H ~ Fq x Fq is to multiply the second 
coordinate by a8- 1. Howeverµ and µ(a:8- 1-) are distinct unless a: = 8, 
which shows thatNaL 2Fq(H, A®µ)~ Hand proves the result for type B. 

The result for type C is immediate from the facts that NaL 2FqB =Band 

that the conjugate, xvx- 1(x, v EB), has the same diagonal as v. 
From the classification of maximal subgroups of SL2Fq ([4] p.286, §§262) 

one readily finds that N aL2F F* 2 = (F* 2 , f) where f is as in (3.4). However, 
q q q 

conjugation byf induces the Frobenius map of F*2 so thatf </:. NaL 2F (F*2, p) 
q q q 

which easily yields the result for type D. 

COROLLARY (3.6). Suppose that g E GL2Fq and that (J, cp) E MaL 2F1 
is 

one of the maximal pairs of type A/D, as in (3.5). If (gJg- 1, (g- 1)*(cp)) = 
(J, 'Pl) then <.p = 'Pl in the case of types A and C. For type B, <.p = A®µ and 
'Pl = A® µ(u ·-)for some u E F; while, for type D, lf'l = <.p or <p1 = F*(ip) 
where Fis the Frobenius of G(Fq2/Fq). 

Proof. We must haveg E NaL 2FqJ = GL2Fq,B,B, (F;2 ,f) for typesA/D, 

respectively. From this observation the result follows easily from the compu­
tations which were used in the proof of (3.5). 

Definition (3.7). Suppose that v: GL2Fq-+ GL(V) is an irreducibl,e repre­
sentation. We will write 

(3.8) 

aaL
2
Fq(v) = L-rar(H, Ar® µr)°L 2Fq 

+r,sbs(B, Inf¥(A1,s 0 A2,s)fL2Fq 

+r, c (F* p )GL2Fq t t q2, t 

+r,udu(GL2Fq, Xu· det)°L 2Fq 

+ ... 

to signify that the multiplicities in aaL 2Fq(v) of the maximal pairs of types 
A/D in (3.1) are as shown in (3.8) (the ellipsis denoting the sum of all the 
terms of other types). In (3.8) the sum over r, s, t, u are taken over all the 
terms of types A, B, C, D respectively 

THEOREM (3.9). With the notation of (2.19) and (3.8) 

(i) 



(ii) 

(iii) 

(iv) 
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El:#µ(H, X1X2 ® µ)GL 2Fq 

+(B, Inf¥(x1 ® x2))GL2Fq 

+(B,InfJ(x2 ® x1))0L2Fq 

+ E • (F* p)GL2F q 
F 2 q2' 

ResF~ (p)=XqX2 
q 

+···. 

+···. 

Proof. Part (i) follows from (1.S)(ii). 
Parts (ii) and (iii) are similar and therefore we will only prove part 

(ii). By (3.2) and (3.5), the multiplicity of a term of type B from (3.1) in 
aaL 2FiR(x1, X2)) is equal to 

(.:\ ® µ, Res~L 2Fq (Ind~L 2Fq (InfJ(x1 ® x2)))) 

= EzEH\GL2FqjB(.;\ ® µ,lnd~nzBz-l(Res~~~z-l((z-1)* 

(Infi(x1 ® x2))))) 

= Ez=l,w(.:\ ® µ, lnd:nzBz- 1(Re~:~;;z- 1((z- 1)*(InfJ(x 1 ® X2))))) 

by the Bruhat decomposition, 

= (.:\ ® µ, (x1X2 ® 1) + Indf.(x2 ® x1)) 
q 
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= (A 0 µ,x1x2 @Indjf
11

(l)) 

_ { 1 if A = X lX 2, 
- 0 otherwise. 

This accounts for the first part of the formula in part (ii). 
By (3.2) and (3.5), the multiplicity of a term of type C from (3.1) in 

aaL2Fq(R(x1, x2)) is equal to 

B GL2F GL2F B (Infr(A 1 0 A2), ResB q (IndB q (Infr(x 1 0 x2)))) 

= (Infi(A1 0 A2), Infi(x1 0 x2) + Ind¥(x2 0 x1)) 

= (A1,X1)(A2,x2) + (A2,x1)(A1,x2) 

_ { 1 if P1, A2} = {x1, x2} 
- 0 otherwise. 

This accounts for the remaining part of the formula in part (ii). 
Clearly there are no terms of type A in aaL2Fq(R(x1, x2)) and the multi­

plicity of a term of type D is equal to 

(p, Res;~ 2Fq (R(x1, x2))) 
q2 

= cl- q)- 1~xEF*2-F{P(x) · o+ (q2 - l)- 1LxEFq(q + l)p(x)x1(x)x2(x) 
q 

F*2 
= (ResF~ (p), x1x2) 

q . 

by the character values of (2.22). This completes the proof of part (ii). 
For part (iv) we observe that, since r(0) is irreducible, there can be no 

terms of type A. Also there can be no terms of type C, since 

(Iilf¥(A10A2),Indi(00 'VFq)) 

= (A1A2 0 1, 0 0 \Jf Fq) 
=0. 

By (3.2) and (3.5), the multiplicity of a term of type B from (3.1) in 
aaL

2
Fq(r(0)) is equal to 
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·,which accounts for the first part of the formula in part (iv). 
Finally, by (3.2) and (3.5), the multiplicity of a term of type D from (3.1) in 

aaL
2
Fq(r(0)) is equal to 

(p, Res;~ 2Fq (r(0))) 
q2 

= (q2 - 1)- 1ExeF•P(x)(q - 1)0(x) - (q2 - 1)- 1ExeF* -F•p(x)0(x) + 0(F(x)) 
q q2 q 

by (2.22) 

= (q+ l)(q 2 -1)- 1ExeF•P(x)0(x)- (p,0)-(p,F*(0)) 
q 

F* F* 
= (ResF~\p),ResF~\0))- (p,0)- (p,F*(0)) 

q q 

which accounts for the remaining terms in the formula for part (iv) and com­
pletes the proof. 

COROLLARY (3.10) The irreducible representations, v, of GL2Fq are uniquely 
characterised by the terms of types A/D, in the termino/,ogy of (3.1), which 
occur in the Explicit Brauer Induction formula 

These (maximal) terms are given by the formu/,ae of(3.9). 

Proof. This follows easily by inspection of the formulae of (3.9). For ex­
ample, the Weil representations are the only ones for which a term of type 
D appears. The type B terms in aaL

2
Fq(r(0)) determine the-sum over which 

the type D terms are taken and the characters 0 and F* ( 0) are characterised 
by being the only two characters on F;2 with the prescribed restriction to Fq 
which do not appear in the sum. Of course, r(0) = r(F*(0)). 

(3.11). The Shintani Correspondence for GL2Fq, 

Let EE G(Fqn/Fq) denote the Frobenius transformation. In [8] Shintani 
discovered a remarkable one-one correspondence of the following form 

(3.12) 
{ 

{ irreducible representation, v, of 
. GLmFqn fixed under :E} 

1 Sh 
{irreducible representations, Sh(v), of GLmFq }. 

In (3.12) the Frobenius, E, acts via its action upon the entries of a ma­
trix. This correspondence, which was also treated by Shintani for GL2 of a 
local field, is also sometimes called Shintani descent or lifting (see [6], for 
example). 
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The correspondence of (3.12) may be characterised by means of the Shin­
tani norm. For XE GLm,Fqn define 

(3.13) 

Although N (X) lies in GLmFqn, its conjugacy class contains a unique GLmFq­
conjugacy class, which depends only on the conjugacy class ofX. This gives 
a meaning to the equation 

(3.14) Trace (Sh(v)(N(X))) = Trace (v(X)). 

The correspondence of (3.12) is characterised by the fact (3.14) holds for all 
XE GLmFqn. 

When m = 1 this correspondence is consequence of Hilbert's Theorem 90, 
which states that H1(G(L/K);L*) = 0. When L/K is an extension of finite 
fields we obtain an exact sequence of the form 

(3.15) 

If v : F;n -, C* satisfies v = E*(v) then, by (3.15), there exists a unique 
Sh( v) : F; -, C* such that 

(3.16) Sh(v)N(x)) = v(x) (x E F;n). 

(3.17). We shall now use Explicit Brauer Induction and (3.9)-(3.10) to de­
scribe a correspondence of type of (3.12) in the modest circumstances of 
GL2Fqn, As it happens, our correspondence will coincide with that of(3.11) 
although no mention of the Shintani norm appears in our cQntruction. My 
correspondence will be effected by applying Hilbert's Theorem 90, in the 
sense of (3.15)-(3.16), to the maximal one-dimensional characters which ap­
pear in the fomrula for aaLzFqn (v). 

We begin by observing that, if v is irreducible and E* ( v) = v, then 

aaL2Fqn (v) = aGLzFqn (E*(v)) = E*(aaL2Fqn. (v)) 

where E*: R+(GL2Fqn)-, R+(GL2Fqn) is given by the formula 

Since E*(v) is also irreducible the maximal terms of types A/D in 
aaLzF qn (E* ( v)) will be obtained by applying E* to the maximal terms of type 

A/Din aGLzFqn (v). 
Now let us describe our contruction of the correspondence, which will be 

denoted by T. 
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If E*(L(x)) = L(x) then E*(x) = x and there exists a unique x : Fq -+ C* 
such that x(z) = x(N(z)) whereN is the norm. In this case we set 

(3.18) Y(L(x)) = L(x). 

Next suppose that E*(R(x1, x2)) = R(x1, x2) then, in (3.9)(ii), 

L)H, x1x2 ® µ)GL 2Fqn = I)H, E*(x1x2) 0 µ)°L 2Fqn 

liµ liµ 

and 

By (3.6), these equations imply that either 

(a) X = E*(x1) and X2 = E*(X2) 

or 

(b) Xl = E*(x2), X2 = E*(x1) and X1X2 = E*(x1x2)-

In case (a) there exist unique homomorphims, Xi : Fq -+ C*(i = 1, 2) such 
that Xi(z) = Xi(N(z)) for each i = 1, 2. In this case we set · 

(3.19) 

In case (b) we have a surjective homomorphism 

.\: G(Fqn/Fq) ~ Z/n-+ {±1} 

given by .\(g) = (-l)i-l ifg(xi) = Xi· Hencen = 2d, Ker(.\)= G(Fqn/Fq2) 
and each Xi is fixed by Ker(.\). Hence there exists a unique x 1 : F*2 -+ C* 

q 
such that xi(z) = x 1(N(z)) where N : F;n -+ F; 2 is the norm. Also, if F 

generates G(Fq2/Fq) and x2 = F*(x1) then x2(z) = x2(N(z)). 
Notice also that, in case (b), E*(x1x2) = XlX2 so that there exists a unique 

x1,2 : F;-+ C* such that x1(z)x2(z) = x1,2(N(z)). In fact we have 
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For, if w E Fq, v E F; 2 and r E F;n satisfy N(v) = w, N(r) = v then 

x1(w) x1(vF(v)) 

Xl (v)x1(F(v)) 

x1(v)x2(v) 
x1(N(r))x2(N(r)) 

x1 (r)x2(r) 

x1,2(N(r)) 

x1,2(w). 

From these characters it is natural to form 

+···. 

in R+(GL2Fq)- These are the maximal terms oftypesA/D in aaL
2
Fq(r(x1)) 

and therefore, in case (b), we set 

(3.20) 

If :E*(S(x)) = S(x) then, as in case (a) above, we see that :E*(x) = x and 
that there exists a unique x: Fq--+ C* such that x(z) = x(N(z)). In this case 
we set 
(3.21) i(S(x)) = S(x). 

Finally suppose that :E*(r(8)) = r(8). Hence, by (3.9)(iv), 

and 
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F• F• 
The first equation implies that ResF~2n (I:*(0)) = ResF~2n (0) and so there 

cf" qn 

exists a unique 0 : Fq--+ C* such that, for all z E F;n, 0(z) = 0(N(z)) where 
N : F;n --+ Fq is the norm. However, I:* ( 0) and 0 must be distinct on F;2n, 

since F E G(Fq'ln/Fqn) acts non-trivially on 0, by assumption. The second 
equation shows that I:* permutes the set 

so that we must have I:*(0) = F*(0). Since G(Fq2n/Fq) === Z/2n and F = r;n 
we have 
(3.22) (r:n- 1)*(0) = 0. 

Since 0 is not Galois invariant (r:n-l) must be a proper subgroup of (I:). 
However, HCF(n- l, 2n) E {1, 2} so that we must haveHCF(n-1, 1, 2n) = 2 
and therefore n must be odd. This means that 

(3.23) 

_::;!nd, by (3.22), there exists a unique 0 : F; 2 --+ C* such that 0(w) = 0(N(w)) 

for all w E F;2n. If z E Fq ands E F;n satisfy N (s) = z then 

F• 2-
ResF~ (0)(z) 

q 

F•2 -
ResF! (0)(NF<l"/Fq(s)) 

0(NF 2n/F 2 (s) 
q q 

F•2n 
ResF~ (0)(s) 

qn 

0(NF<l"/Fq(s)) 

0(z) 

F• 
2 - ~ 

so that Res/! (8) = 0. From these characters it is natural to form 
q 

~ GL '2F EvEFq(H, 0 © 'VFq(v · -)) - q 

+E • (F* p)GL 2Fq 
_ _ F 2 _ q2' 

p\t{e,F•(e)},ResF~ (p)=0 
q 

+ .... 
The_se are the maximal terms oftypeA/D in aaL

2
Fq(r(0)) and therefore we 

set 
(3.24) 1'(r(0)) = r(0). 
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Each of these recipes is reversible and one easily see that the process yields 
a one-one correspondence similar to that of (3.12). The discussion of (3.17) 
may be summarised as follows: 

THEOREM (3.25). The yoga of (3.17) yields a one-one correspondence of the 
form 

(3.26) ! 
{irreducible representations, v, of 

GL2Fqn fixed under :E} 
tr 

{irreducib/,e representations, l'(v), of GL2Fq}, 

In fact, l' coincides with the Shintani correspondence as described in ([BJ, 
p.410, §§4). 

The fact that l' satisfies the characterisation of Sh which is given by (3.16) 
is easily verified by means of the table of character value in (2.22). 

Remark (3.27) It would be very interesting to develop for GLmFq a yoga 
similar to that which is given in (3.17) for GL2Fq, In such an enterprise 
one would have to determine suitable generalisations of types A/ D of (3.1). 
In this example the types were arrived at by considering first the maximal 
abelian pairs and then, should they prove not to be self- normalising, their 
normalisers. In the case of GL2Fq what we have given is merely a calcu-
lation and in general one would wish for a more intrinsic proof; preferably 
one which, in the presence of a suitable Explcit Brauer Induction technique, 
would extend to the case of G LmF where F is a local field. 
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