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ON THE CHERN CHARACTER HOMOMORPHISMS
OF SO(n) AND Spin(n)

BY TAKASHI WATANABE
Introduction

We calculated the Chern character ch : K*(G) — H**(G; Q) for G = Spin(n)
with n < 9in [6] and for G = Spin(2n + 1) in [7]. We have done it for G =
S50(2n + 1) in [8]. The purpose of this paper is to do it for G = SO(2n) and
Spin(2n). '

1. Representation rings

In this section we collect some results on the complex representation rings
of classical Lie groups that concern us. For details we refer to [1], [4] and [9].

Let G be a compact connected Lie group. Its representation ring R(G) is
the Grothendieck construction of the semiring of isomorphism classes [V] of
G-modules V over C. It has an augmentation :

e:R(G) - Z

which assigns to each class [V| the dimension of V. Let T be a maximal torus
of G. The Weyl group W(G) = N(T)/T of G acts on T and therefore on R(T).
The inclusion 1 : T — G induces a monomorphism * : R(G) — R(T) whose
image is contained in the subring R(T)W () of elements invariant under the
action of W(G). Thus we can regard R(G) as a subring of R(T) through 1*.
R(G) forms a A-ring (see [4; 12(1.1)]) with operations

Ak R(G) - R(G) for k>0

induced by the exterior power functors V — 4¥(V'), which have the following
properties: A\0(z) = 1 for all z € R(G); if £(z) = n, then

e(M(z)) = (:) = k'(n"—_'_k), and A\ (z) =0 for k> n.

Let T, be the maximal torus of diagonal matrices
diaglexp(i61),---,exp(ifn)] (6; €R)

in the unitary group U(n) ¢ M(n,C). If o1, -, an denote the standard 1-
dimensional representations of T, we have

(1.1) R(Ty) = Z|ay, ai’l, cer, 0, a,';l]/(alai‘l —1,-+,opa;t — 1).
Put A\; = [C"] € R(U(n)) and let Ax = A¥(A;). Then

(1.2) R(U(n’)) = Z[’\I) Az, 0y An—1,An, A;I]/(AnA;l - 1),
557



558 TAKASHI WATANABE

where €(A;) = (}) and in R(Ty) the relation

n n
(1.3) [T +0at) =D Aptt
=1 k=0
or equivalently
n n
(1.4) [I¢+a) =D rnit*
=1 k=0

holds, where t is the indeterminate (see [4; 13(3.1)]).
For the rotation groups SO(n) c M(n,R), there are inclusions

in: SO(n) — SO(n +1).

Let
i, : U(n) — SO(2n)

be the realification; that is, i, =1} @ - -+ @1}, where ¢} : U(1) — SO(2) is the
map defined by

b a

Then Ty, = 1},(Ty) is a maximal torus of SO(2n).
Now T}, = 13,(T») is a maximal torus of SO(2n + 1), and R(T},) is the same
as in (1.1). Put g} = [R***1 ® C] € R(SO(2n + 1)) and let p}, = A*¥(}). Then

Coa+ib — (a ”b) € M(n,R).

(1.5) R(SO(2n + 1)) = Zlih, -+, b,

where e(p}) = (**') and in R(T},) the relation

n 2n+1
(1.6) 1+ [T +eat)(1+a;71) = Y- witk
i=1 k=0

holds (see [4; 18(10.3)]). We have uy,  ;_, = pj fork=0,,---,2n+1, because

2n+1 n
Y bt =+ ) [+ )+t
k=0 i=1

=(t+1) ﬁ(aflt + Daja; ot +1)
=1

=(t+1) ﬁ(ai_lt + 1) (st + 1)
i=1

2n+1

= Z [L'ktk.
k=0
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For n > 3, the universal covering group of SO(n) is the spinor group Spin(n).
Let ,
pn : Spin(n) — SO(n)

be the (twofold) covering map. Then there is a commutative diagram of prin-
cipal fibre bundles:

Spin(n) 2 Spin(n+1) 2= gn

1.7) lpn lpn+1 l=

50(n) - SO(n+1) I sm

Now ! = pap+1~Y(T%) is a maximal torus of Spin(2n + 1). There are 1-

dimensional representations ay,- -, a, of f,’l such that
(1.8) R(T}) =Zfo1 01", -+, an, o, (a1 -~ an) /7]
(alai_l — 1’ ceey ana;l — 1’ ((al aes an)1/2)2 —ay-- .an)

and pap41 : 10, — T?, induces the inclusion R(T%,) — R(T%) under the descrip-
tions of (1.1) and (1.8) (see [4; 13(8.3)]). Put u}, = pant1* (1)) € R(Spin(2n +
1)) and let A3y 41 be the spin representation of dimension 2". Then

(1.9) R(Spin(2n+1)) = Z[“’li oyt l‘i:—lv Azni1),

where the relation

n

(1.10) (Aznt1)? = uh
k=0

holds (see [4; 13(10.3)]) and in R(ﬁ’,) the relation

n
(1.11) Agpi1 = H(ag/Z + ai—1/2) _ Z a;1/2 .. _a;n/z
i=1 e;=+1

holds (see [4; 13(9.4)]). Therefore, the behavior of pap+1* : R(SO(2n + 1)) —
R(Spin(2n + 1)) is given by

Pent+1*(uh) = my for k=1,...,n—1,

(1.12) . nd
Pant1’ () = (Azng1)? = ) ui.
k=0

If T, is the above torus of SO(2n), then R(Ty) is the same as in (1.1). Put
p1 = [R*™ ® C] € R(SO(2n)) and let ), = A¥(u;). We have e(u;) = (%) and
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Bon—k = pi for k =0,1,...,2n. Besides, u, can be halved; that is, there are
two representatlons p, iy of SO(2n) such that (u}) = e(u;) = 3(*") and
Bn = ;L,, + p, . Then
(113) R(So(zn)) = Z[F‘l) B2, Bkn—1, ‘L;i':’ F’;]/(’Yﬂ)!
where
z(ﬂ'n +E“n 2¢ (I"n +Zl‘n 2] (#n- 1+Zﬂn—1 Zk)
i>1 ji21 k>1

(see [4; 13(10.3)]). Here the summations in the right side of the last equality
endat---+ pg +pg+1or---+ p3+ py. Furthermore, in R(T},) the relation

n 2n
(1.14) [T+ at)a+a;t) = pt
1=1 k=0
holds.

Now T = pzn~1(Tn) is a maximal torus of Spin(2n). Similarly, R(T,) is
the same as in (1.8) and pzn Th — Tn induoes the inclusion R(T,) — R(Ty)

(see [4; 138.3)D). Put pr = pan®(mr) ik = p2n*(wi),en = p2n*(uz) €
R(Spin(2n)). Let A] , A, bethehalfspin representations, each of dimension

~1, Then
(1.15) R(Spin(2n)) = Zlu1, k3, b2, Afps A7),
where the relations
AL A, = pn1+ Z Bn—1-2k;

E>1
(1.16) (AF)E=wd + D b2k
E>1
(A7) =t + D bn-2k
>1
hold (see [4; 13(10.3)]) and in R(ﬁ,) the relations
1.17) Ay = Y oo lP Az = S o)
Ie;=1 Me;=-1

hold (see [4; 13(9.4)]). Therefore, the behavior of pa,* : R(SO(2n))
— R(Spin(2n)) is given by

pon' (k) =px for k=1,...,n-2,

pzn.(ﬂ'ﬂ—l) = A;‘nAZ_n - Z Hn—1-2k;
k>1

(1.18) PZn.(F‘ )“ A;n Zﬂn—ﬂc:
k>1

P2t (k) = (8502 = ) o2k
k21
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PROPOSITION (1.19). (1) i2,* : R(SO(2n + 1)) — R(50(2n)) satisfies
ign® (k1) = p1+1.
(2) i3n-1* : R(50(2n)) — R(SO(2n — 1)) satisfies
toan—1*(p1) = py + 1.
Proof. Since the homomorphism R(T},) — R(T;) induced by the inclusion
t9n : Tn — T is the identity, (1) follows from (1.6) and (1.14). Since the

homomorphism R(T,,) — R(T},_,) induced by theinclusionizn_1: T, _; — T,
sends o; to o; fori =1,...,n — 1 and ay, to 1, (2) follows.

PROPOSITION (1.20). (1) T3,* : R(Spin(2n + 1)) — R(Spin(2n)) satisfies
Tan*(B) =p1+1 and 120*(Azat1) =AF +A..
(2)32n-1* : R(Spin(2n)) — R(Spin(2n — 1)) satisfies
Ton-1*(p1) =L +1 and Tan_1*(AF,) =%2n-1°(AZ,) = Azn1.

Proof. The first relations of (1) and (2) follow from Proposition (1.19). The
remaining relations follow from (1.11) and (1.17).

PROPOSITION (1.21). i/,* : R(SO(2r)) — R(U(n)) satisfies

k
(k) =AY Mdnkyi for k=1,..,n

1=0
Proof. In R(T,) we have
n n n n
ITa+o;) =TT e; Hos+8) = [T o TI (6 + )
i=1 i=1 i=1 i=1

n

=21 At by (L4,

i=0
So
Zﬂ.ktk H(1+a, t)(1+a;lt) by (1.14)
1—1
Z“‘)(" 1):A,,_,t1 by (1.3)
=0

—Z'\ 1Y At

i+i=k
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LEMMA (1.22). In R(T,) the relation
n n
(43,07 = (82, = A QoM (-1)™ 7))
i=0  j=0
holds.
Proof. We have

(A )2 (A2_n)2 (A +A2n)(A A;n)

=H(a:ﬂ"'ai_lﬂ)n(a:/z—0‘;—1/2) by (1.17)

=1 =1

= H(a"'""‘i_l) = Hai_l(a? -1)
= H . H(a, +1) H(a, —1)

,\;1(2,\,-)(2(—1)f,\n_,-) by (1.4) witht = +1.

1=0 =0

2. Cohomology rings

In this section we fix some notation concerning the integral cohomology of
our groups G. For details, see [5].

First, if G = U(n), there exist elements z;_; € H¥ " 1(U(n);Z) fori =
1,...,n such that

H* (U(n) Z) AZ(zlaz& : ;ZZn—l)

and
PH.(U(n); Z) = Z{-'1:1) I3, ", z?n—l}; :

where P denotes the primitive module functor. Using such zo;_,’s, we have
(21) H'(U(n);@) = AQ(ZI,I3,-'-,22n_1).

H*(SO(n);Z) has only 2-torsion forevery n > 2. If G = SO(2n +1), by con-
sequences of the Poincaré duality, there exist elements z4;_; € H¥~1(SO(2n+
1);Z) for: = 1,...,n such that

H‘(SO(ZTL + 1); Z)/TOT = AZ(£3) T7y"", z4n—l)

and _
‘PHt(SO(2n + 1);(@) = Q{z3) I7y°"", 214”_1}-
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Using such z4;_;’s, we have
2.2) H*(50(2n +1);Q) = Ag(z3, 27, **, T4n—1).

If G = SO(2n), there exist elements z4_; € H¥71(S0(2n);Z) for i =
1,...,n—1landzh, ; € H¥"1(SO(2n);Z) such that

H*(S0(2n); Z) /Tor = Az(z3,27," ", T4n—6, Tgn—_1)
and
PH*(50(2n); Q) = Q{z3, z7,*, Z4n—5, Ton_1}-

Using such z4_,’s and z4,,_,, we have
(23) H‘(S’O(2n); Q) = AQ(Z;’,, 7y, T4n-5, I'Zn—l)'

if and only if n > 7. If G = Spin(2n + 1), there exist elements Z4_; €
H4~1(Spin(2n + 1);Z) for i = 1,...,n such that

H*(Spin(n);Z) has no odd torsion for every n > 2 and it has 2-torsion

H*(Spin(2n + 1); Z)/Tor = 47(%s, %7, -, Fan—1)

and
PH‘ (Smn(zn + 1)) Q) = Q{E333571 °te :E4n-1}'

Using such '54;;1’5, we have
24) H*(Spin(2n + 1); Q) = Ag(%3, Z7,**, T4n-1)-

Finally, if G = Spin(2n), there exist elements Z,;_; € H¥~1(Spin(2n);Z) for
i=1,...,n—1and ¥, _; € H¥ 1(Spin(2n); Z) such that

H*(Spin(2n); Z)/Tor = Az (%3,%7, -+, F4n—5, Ton_1)

and
PH‘ (SP’"'(2”'), Q) = Q{EZ% 57) e ;E4ﬂ—-5! 57427;—1}'

Using such Z4_;’s and 2}, _;, we have
(2.5) H*(Spin(2n); Q) = 4g(%3, %7, +*, Ean—5, Fan-1)-
The following two propositions are quite easy.

PROPOSITION (2.6). 101" : H*(S0(2n); Z) — H*(SO(2n — 1); Z) satisfies

ton—1"(Tgi—1) = 2451 fori=1,...,n—1,

i2n-1"(2on—1) = 0.
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PROPOSITION (2.7). 2n_1* : H*(Spin(2n); Z) — H*(Spin(2n — 1);Z) satis-
fies '

~

t2n-1°"(B4-1) =41 fori=1,...,n—1,
T2n-1°(#hn-1) = 0.
PROPOSITION (2.8). 1},* : H*(S0O(2n); Z) — H*(U(n); Z) satisfies
iiz.(x&n—l) = Z2n-1-

In particular, if n = 2m, i,,," (z},,_1) = Tam—1 and moreover
I
19m (T4m—1) =0.

Proof. We recall the argument of [6; pp. 465-466]. There, in order to char-
acterize a generator z; € HY(G;Z), its image f;41 € H’*1(BT;Z) under the
transgression 7 : H*(G;Z) — H**1(BT;Z) in the Serre spectral sequence of
the fibration G — G/T — BT is investigated. Consider the commutative
diagram of fibrations:

Umn) — U()/T, — BT,
[ | |
50(2n) — SO(n)/Tn, — BTy,
and H*(BT;Z) = Z[ty,-*,tn], where t; € H%(BT;Z). Clearly r(z2n—1) =

¢n = on(t1, -, tn), where o; denotes the i-th elementary symmetric function,
and T(I’2n~1) = ¢, (see [5; Chapter 3]). Hence the first statement is obvious.

When n = 2m, two elements z,,_;,Z4m-1 € H*m~1(50(4m); Z) have to be
dealt with. We may set .

7(Z4m—1) = ¢ - fam for some ¢ € Z,

where f4m € HY™(BT;Z) is not divisible by any other elements of H*™(BT;Z)
and gives rise to the generator p,, of the W(SO(4m))-invariant subalgebra

H*(BT; Q)W(SO“"')) = Q[p1,p2,"**, P2m~-1, €2m},

where p; = o;(t2,--,t2). In view of [6; Remark of p. 466], the element py, —
(—1)™2¢2m which does not contain the term c2,, modulo decomposables in

H'(BT; Z)W(U(27ﬂ)) — Z[cl, €2y, c2m]

must give rise to fu,,. (For the case G = Spin(4m) with m = 2, see the bottom
of [6; p. 476].) This implies the second statement.
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3. K-rings
In this section we collect some results on the complex K-theory of our
groups G.
Let

B: R(G) —» K71(C)

be the map of [3]. Then it is natural with respect to group homomorphisms
and has the following properties:

(3.1) For each py, p2 € R(G),

B(p1 + p2) = B(p1) + B(p2);

(3.2) If n € R(G) is represented by a trivial G-C-module of dimension n, then
B(n) =0;
(3.3) For each p1,p2 € R(G),
B(p1p2) = €(p2)B(p1) + £(p1)B(p2)-
Hodgkin [3; Theorem A] says that, if G is a compact connected Lie group

with x(G) torsion-free, the Z/(2)-graded K-ring K*(G) is torsion-free and
has the structure of a Hopf algebra over Z; more precisely, if

R(G) = Z[plipZI : "1pl]1

we have

K*(G) = 4z(B(p1),B(p2)," -+, B(m)),

where each B(p;) is primitive. This yields the following results. First, if
G = U(n), from (1.2) we have elements #(A1),---, B(An=1),8(An), B(A;Y) €
K~1(U(n)). But the relation

(3.4) A=Y = =B(n)
holds; in fact, since e(An) = e(A;1) = 1,

B(An) + BOAGY = B(AnAY) by (3.3)
=p(1)=0 by (3.2).

Thus
(3.5) K*(U(n)) = 4z(8(A1), -+, B(An-1), B(An))-
If G = Spin(2n + 1), it follows from (1.9) that

(3.6 K* (SI":"'(2"‘ + 1)) = AZ(ﬂ(I‘a): T ’ﬂ(l‘;—-l)x ﬂ(AZn;i-l))'
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Finally, if G = Spin(2n), it follows from (1.15) that

3.7 K*(Spin(2n)) = 4z(B(p1), -, Blun—2), B(AT,), B(AZ,))-

If G = SO(2n + 1), from (1.5) we have elements B(u}), -+, 8(ul,) €
K~1(SO(2n + 1)). According to [2], there exist other two elements ezp+1 €
K~1(50(2n + 1)) and £3,41 € K°(SO(2n + 1)) such that

K*(S0(2n + 1)) =Az(B(s}),*+, Blkn—-1), €2n+1)®
' (Z{1} ® Z/(2"){€2n+1})/(€2n+1 ® Ean+1)

and

(3.8) pan+1’(€2n+1) = 28(Azn+1).

Therefore,

(3.9) K*(SO(2n+1))/Tor = 4z(8(k1), -+~ Albp—1), €2n+1)-

If G = SO(2n), from (1.13) we have elements B(u1),-* -, B(Bn-1), (&),
B(u;) € K~1(SO(2n)). According to [2], there exist other three elements
b2n, €2n € K~1(50(2n)) and &3, € K9(SO(2n)) such that

K*(S0(2n)) =Az(B(11),- -, B(#n—2),02n,€20)®
(z{1} @ 2/ (2" 1) {€2n})/ (€2n ® &2n)

and
(3.10) P2n.(62n) = ﬂ(A;-n) - ﬂ(A;n): P2n.(€2n) = 2ﬂ(A2+n)'
Therefore,

311)  K*(SO(2n))/Tor = Az(B(u1), -, Blin—2), 62n, 2n).

PROPOSITION (3.12). (1) In K*(Spin(2n + 1)) the relation

n—1
Bluy) = 2" B(Agns1) — D Alu})
k=1

holds.
(2) In K*(Spin(2n)) the relation

[(n=2)/2]
Bhn-1)=2""18(A%) +2"18(A5) — Y. Blbn—1-2)

k=1
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holds (where [z] is the Gauss’ notation of z € R).

Proof. By using (3.1)-(3.3), (1) follows from (1.10) and (2) follows from the
first relation of (1.16).

PROPOSITION (3.13). (1) In K*(SO(2n + 1)) /Tor the relation

- n—1
Blup) =2"eznt1— 3 Blik)

k=1
holds.
(2) In K*(SO(2n))/Tor the relations
[(n-2)/2]
B(kn-1) = *2"_:152n +2" ez — D Blen-1-2),
[(n-1)/2]
Blud) =2"lean— D Blkn-2k)s
, [(n-1)/2]
Blun) =—2"6n+ 2" tezn— > Alun—2i)

k=1
hold.

Proof. Since pp* : K*(S0(n))/Tor — K*(Spin(n)) is injective for all n, it
suffices to verify the stated relations by applying p,* to them. Then (1) follows
from (3.8) and Proposition (3.12)(1). Similarly, by using (3.1)-(3. 3) (2) follows
from (1.16) and (3.10).

PROPOSITION (3.14). (1) 12,* : K*(Spin(2n + 1)) — K‘(Spin(Zn)) satisfies
 Tan (B(K) = Blu),
‘Zn (ﬂ(A2n+1)) = ﬂ(A ) + ﬂ(A2n)
(2) Tgn_1* : K*(Spin(2n)) — K*(Spin(2n — 1)) satisfies
Tan—1*(B(11)) = B(KY),
T2n-1*(B(AF,)) = t2n-1*(8(A3,)) = B(A2n—1).

Proof. By using (3.1) and (3.2), this follows from Proposition (1.20).
PROPOSITION (3.15). (1) i3,* : K*(SO(2n + 1))/Tor — K*(SO(2n))/Tor

satisfies
i2n* (B(11)) = Blm1),
iZn‘(f2n+l) = —282, + 2€2p.
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(2) t9p—1* : K*(SO(2n))/Tor — K*(SO(2n — 1)) /Tor satisfies

izn—1"(8(41)) = B(u1),
i2n—l‘(62n) = 0;

12n-1"(€2n) = €2n-1.

Proof. This is similar to the proof of Proposition (3.13).
PROPOSITION (3.16). i%,* : K*(50(2n))/Tor — K*(U(n)) satisfies

in" (B(#1)) = B(A1) + B(An—1) — nB(An),
in' (62n) = D (-1)"*B(x),
k=1

n—1
in"(e2n) = D (14 (-1)"F)B() — 2272 = 1)B(Mn)-
k=1

Proof. The first relation follows from:

i (B(m1)) = B (11)),
= B(A1+ An—12;}) by Proposition (1.21)
= B(A1) + B(An-1) + nB(A;Y) by (8.1) and (3.3)
= ﬂ(’\l) + B(An-1) — "-.H('\n) by (3.4).

Since

s(g N =Y (’:) =(1+1)"=2"

=0

and

e =50 () = Crear o
j=0 j=0
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we have
in* (62n) = i7.* ((p2n ") "1 (B(AF,) — B(AZ,))) by (3.10)
=1in*((p2n") 1 (27"B((A5,)% - (43,)%)) by (33)

= zwnﬂ('\;l(if\i)(zn:(—l)"_jz\j)) by Lemma (1.22)
: =0 7=0

=273 A (O (=1)™ ) by (3.3)

i=0  j=0

=27"2"8(> (-1)"771;) by (3.3)
7=0

Y (-1)"77p(x;) by (3.1) and (3.2).
=1

The third relation will not be used later, so we omit its proof.
4. The Chern character homomorphisms

In this section we prove our main results. -
PutNt = {1,2,3,...} and let ¢ : Nt x Nt x N* — Z be the function defined

by

k . n :
4.1) o(n,k,q) = Z(—l)'"l(k .)ﬂ'l

-1
1=1

for n,k,¢ € N*. Then, by an argument analogous to that of [6; p. 470] in
which the Chern character of SU(n + 1) is calculated, we have

PROPOSITION (4.2). With the notations of (3.5) and (2.1), ch : K*(U(n)) —
H**(U(n); Q) is given by

=L (-1 .
ch(B(Ae)) =_Z(,.—_1—)!—¢(n, k,§)z3i_1 for k> 1.

=1

Let P, = {2¢ |{=0,1,2,...}. For each n € Nt there is a unique integer
8(n) so that
2a(n)—1 <n< 2a(n)_

Let

or ifn € Py ands = 2°(")

2 ifn¢ Pyandi=2°("1
r(n,t) =
1 otherwise.
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For convenience we introduce a function ¢; : Nt x N* — 7Z defined by

$1(n,9) =27" ) $(2n+1,k,q).

k=1
The following result was shown in [7].

THEOREM (4.3). With the notations of (3.6) and (2.4), ch : K*(Spin(2n +
1)) — H**(Spin(2n + 1); Q) is given by .

n _1 i—lzf(n,l') S~
cHB) =3 (e + Lk 205,

ch(B(Azn+1)) = Z( 1)‘ 12

r(n,i)—1

" $1(n, 20)Z4i_1.

The following is quoted from [8; Theorem 4.4].

THEOREM (4.4). With the notations of (3.9) and (2.2), ch : K*(50(2n +
1))/Tor — H**(50(2n + 1); Q) is given by

noooviel
chlp()) = Y- L btan + 1,k 2z,
=1
no qy-1
ch(eznt1) = Z ((—211—)1—)?¢1(n, 20) 241
=1

COROLLARY (4.5). (1) pan+1* : H*(SO(2n + 1); Z) — H*(Spin(2n + 1);Z)
satisfies
P2n+1‘(z4i—1) = 2"("")-1’5:'4,'_1 for 1= 1,...,n

(2) p2n* : H*(SO(2n); Z) — H*(Spin(2n); Z) satisfies

pZn.(x‘ﬁ—-l = 2r(n Li)- 11;41 1 fori=1,...,n—1,

P2n‘ (x'2n—1) = z2n—-1'

Proof. Since ¢(n,1,q) = 1 for all n,q € N*, we have

Z (2 1) 1;|2P2n+1 (z4i—1) = P2n+1*(ch(B(4}))) by Theorem (4.4)
=1
= ch(pan+1°(B(k1))) = ch(B(k)))

n )t 12r(n,t)
Z 2= — %41 by Theorem (4.3)
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and by comparing both sides, (1) follows.
To prove (2), we use the following commutative diagram induced from (1.7):

H'(SO(2n—1);Z) 222" H*(SO(2n);Z) = H*(S¥n17)

[ |2’ l=

H*(Spin(2n —1);7) 2= H(Spin(2n);z) "2 HY(S™L;2).
Since
g2n—1"(¥2n-1) = 25,1 and Gon—1*(v2n-1) = Thn_1,

where H*"~1(8?n~1,7) = Z{u3,_1}, the second relation of (2) follows. By
the choice of z4;_; and Z4;_1 (cf. the proof of Proposition (2.8)), we may set

P2n‘(z4i—-l) =a- ;4"_1 for some a € Z.

Then the first relation of (2) follows from (1) and Propositions (2.6), (2.7).

For convenience we introduce a function ¢ : Nt x N* — Z defined by

[(n-2)/2]
do(n, q) = 2~ (n-1) E é(2n,n — 1 — 2k, q).

k=0

THEOREM (4.6). With the notations of (3.11) and (2.3), ch : K‘(SO(2n)) /Tor
— H**(50(2n); Q) is given by

i—1
e (Bwe) = Z‘ 2 gtam, b )z
L 0™+ (1))

1) é(2n, k,n)zh, 4,

ch(&zn) = Z’Zn—l ’

n-l, 1yi-1
ch(ezn) = E ((2 ) 1),24‘0(", 2)z4i—1

()" ta+ (=)

(n—1)!

Proof. Since f(p1) is primitive in the Hopf algebra K*(50(2n))/Tor (see
[2]) and ch is a homomorphism of Hopf algebras, we may set

+(1+ o(n, n))zh,_1-

n—-1

ch(B(p1)) = Z 0iZgi_1 + a'Thn_y
=1
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for some a;, a' € Q. First, apply i3,—1* : H*(SO(2n); Q) — H*(SO(2n — 1);Q)
to this equation. Then the left hand side is :

i2n—1"(ch(B(k1))) = ch(izn-1*(B(11)))
=ch(B(#})) by Proposition (3.15)(2)

"1( 1)11

Tz—;—-i)—'z4, 1 by Theorem (4.4)

and the right hand side is
n—1 n—1
l‘z:.—l'(Z 8;Z4i_ 1 +0'Ty, ) = Z @i Tgi—1
=1 1=1

by Proposition (2.6). Hence a; = (—=1)*~12/(2i — 1)! fori =1,...,n — 1. Next,
apply 1,* : H*(50(2n);Q) — H*(U(n);Q) to the above equation. Then the
left hand side is

in (ch(B(r1))) = ch(in" (B(k1))
= ch(B(p1) + B(in—1) — nB(un)) by Proposition (3.16)

1—1
= 2 2 = 1,0 gl m

by Proposition (4.2). Since ¢(n, k,1) = ("_1) for all n, k € N*, we have
14 ¢(n,n—1,1) — ng(n,n,1) =14+ (n—1) —n=0.

If2 <1 < n, since ¢(n,n — k,i) = (—1)*¢(n, k,3) by [8; (3.9)] and é(n, k,i) =0
for all k > n by [8; (3.10)], we have

1+¢(n,n—1,9) — ng(n,n,9) =1+ (—1)i¢(n, 1,4)
=1+ (-1)".

Consequently, fori=1,...,n,
1+ ¢(n,n— 1,3) — ng(n,n,3) = 1+ (—1)*.
Thus

1)1 + (-1))

4.7 in* (ch(B(m1))) = ) - G- T2i-1.

=1
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On the other hand, the right hand side is

n-1

o * 11! !
tn (E 8iTgi—1+ 8 Tgn_y) =+ 8 Ton1
=1

by Proposition (2.8). Hence a' = (—1)"~1(1+ (—1)")/(n— 1)!. This proves the
first relation for k = 1 and that for k > 1 is obtained by applying [6; Lemma
1] to it.

Similarly we may set

n—1

ch(bzn) = ) bizgioy +b'zh, 4
1=1

for some b;,b' € Q. First, apply i2,—1* to this equation. Then the left hand
side is
i2n—l. (Ch(62n)) = Ch('.Zn—l‘ (6211))
=0 by Proposition (3.15)(2)

and the right hand side is
 n-1 n-1
ton—1*(D_ bizaio1 +b'2hy_1) = D bizgi_1
1=1 ) =1

by Proposition (2.6). Hence b; = 0 fori = 1,...,n — 1. Next, apply 1,* to the
above equation. Then the left hand side is
i7" (ch(62n)) = ch(ip" (62n))

=ch(D_(-1)""*8(Ar)) by Proposition (3.16)
k=1

(=1)""*ch(B(Ax))

I
M:

x
Il

1

M: i M:

l)n—k(z - 1)'1): é(n,k,3)z9;_1) by Proposition (4.2)

(1)'1"

- 1)! (Z(_l)n—k¢(n: k!‘.))zﬁ—-l-
k=1

-
Il
-
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But

n

> (=1)"kg(n, k1)

< n—k k -1 7 $—1
=y (7)™ by @p
=ii(_1)n—k+]’—l< ) - n_J( 1)n—m—1 (;)]4'—1

i=1k=j j= 1m—0
"—ljfjl(g( (1)t = -y IZ( et (221
(::;): “1=g(n—1,n,i)

fori=1,...,n—1 by [8; (3.10)]

{z

- 1(1':.-—1)' for i=n by (4.1)

Thus :
12 (eh(62n)) = S (1) n - oy = 2
2n ( ) 2n—1 2n—-1-
On the other hand, the right hand side is
n—-1
(D bz +bh, 1) =b'zany
i=1

by Proposition (2.8). Hence b’ = 1. This proves the second relation.
The third relation is obtained from the first and second relations by using
the first relation of Proposition (3.13)(2).

The second relation of this theorem reflects the fact that the image of
gon-1": K* (52" 1) — K'(SO(2n)) equals Az(ﬁzn)
The following corollaries are probably known.

COROLLARY (4.8). 1,* : H*(S0(2n);Z) — H*(U(n); Z) satisfies
(Afzggy for i=1,...,[(n—1)/2]
it (z4i-1) =
0 for i=[(n—-1)/2]+1,...,n— 1.
Proof. We have

i—1 n—1
Z ((2'1) 1)|2'n T4i— 1)+( ) ( (1_:)|( 1) )l-(z2n—1)
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= 1n'(ch(ﬂ(u1))) by Theorem (4.6)

and therefore, by comparing both sides, the result follows.

COROLLARY (4.9). 12,,* : H*(SO(2n + 1);Z) — H*(SO(2n); Z) satisfies:
Q) Ifn=2m+1,

Tys--1 fO" i=1,...,2m

t4m+2" (T4i—1) = {

0 for i =2m+1;

(i) If n = 2m,
Ty fori=1,...,2m—1and i #m
tam*(T4i—1) = { Tam-1+ (-1)™zl, | fori=m
0 for 1« =2m.
Proof . We have

£— 1
Z( : 1),'zn *(z4i~1) = i20"(ch(B(k1))) by Theorem (4.4)

_ch(;z,, (B(1}))) = ch(B(u1)) by Proposition (3.15)(1)

‘ 1 _1\n-1 _\n
— Z ((2‘1 1)'2 L 1+( 1) (n(i‘:)'( 1) )z’2n-—1 by Theorem (4.6)

and therefore, by comparing both sides, the result follows.
THEOREM (4.10). With the notations of (3.7) and (2.5), ch : K*(Spin(2n)) —
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H**(Spin(2n); Q) is given by

i—lor(n—1,)
on(ptue) = 5 T 0 k20
i=1
n—1 n
( 1) ( (1_:)|( 1) )¢(2n,k,ﬂv)%‘2n—11

n—1 i-lgr(n—1,{)-1
ch(8(AF,)) = Z( ) (2i2— o $o(n, 2¢)Zgi—1

=1

1, (=) (=)
+—(1+ (1)

$o(n, 1)) &1,

)c—-lzr(n— #)—-1

ch(B(A3,)) = Z( : —7)1 po(n, 20) T4 1

n—1 _1\n
= (n(i_:)!( 2l )¢0("s"))5'2n—1-

(-1
+2( +

Proof. We have
ch(B(m)) = ch(ﬂ(ﬂzn'(#k))) = pan" (ch(B(nk)))
_mn-(z (= 1)'—1)' $(2n, k, 26)z4_;

L O+ (=)

(n—1)!
by Theorem (4.6)

n—1 i
(-1)*12 N or(n—1,§)—1x

= ; m¢(2n, k, 21)2 ( 1 ) 1.'54"__1
L G0 (-,

(-1
by Corollary (4.5)(2)

8(2n, k,n)z5, ;)

é(2n, k, ﬂ)”\""Zn—l

n—1 (__l)i—-lzr(n-— 1,4)
(2 - 1)!
L EVT (=)
(n—1!
Similarly, the second and third relations follow from (3.10), Theorem (4.6) and
Corollary (4.5)(2).

¢(2”‘, k, 21');4"_1

=1

$(2n, k, )Ty, _;.
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COROLLARY (4.11). T2,* : H*(Spin(2n + 1); Z) — H*(Spin(2n); Z) satisﬁes:.
AIfn=2m+1,

. Ty4-1 fori=1,...,2m
tam+2’ (Fhio1) =
0 for i =2m+1;
(ii) If n = 2m,
((E4i—1 fori=1,....2m—~1and i #m

. Tgm-1+ (-1)"%,_, fori=m with m¢ P,
tam’ (F4i-1) = |
2%4m—1 + (—l)mﬂm_l for i =m with me P,

L0 for i = 2m.
Proof. We have
( 1):—12r(n,s)~ . ,
z 2= e — 19, (F4i—1) =12n" (ch(B(1]))) by Theorem (4.3)

=chng (,9(,41)) = ch(B(n1)) by Proposition (3.14)(1)

e G N e T

(21 — 1)! a1+ (n—1)! “an-1

by Theorem (4.10)

=1

and therefore, by comparing both sides, the result follows.
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