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FIBREWISE CONFIGURATION SPACES 

BY M.C. CRABB AND I.M. JAMES 

Although configuration spaces arise in other branches of mathematics, for 
topologists they were first considered by Fadell and Neuwirth [7] some thirty 
years ago. The first mention of fibrewise configuration spaces in the litera­
ture appears to be in a note by Duvall and Husch [4]; the idea had occurred 
to others such as Cohen* and Taylor [2] and Harvey [10] about the same 
time. Our object, in this paper, is to obtain fibrewise versions of some of the 
original results ofFadeU and Neuwirth. This forms part ofa general project 
the aim of which is to develop fibre wise versions of appropriate concepts and 
results in topology and especially homotopy theory. For the basic theory of 
fibrewise topology, particularly terminology and notation, we refer to [12]. 
For the theory offibrewise manifolds, however, we give an outline here, suf­
ficient for present purposes; a more thorough account will be contained in 
[5]. 

1. Introduction 

It may be helpful to begin with a brief outline of the relevant definitions 
and results in the ordinary theory before we start to discuss the fibrewise 
version. Recall that the nth configuration space Fn(X) of a space Xis de­
fined as the subspace of the topological nth power Tin(X) consisting of n­
tuples of distinct points of X. We can also, when X is Hausdorff, think of 
Fn(X) as the space emb(Qn,X) of embeddings in X of the discrete space 
Qn = {1,2, ... ,n} c R. Thus F 1(X) = X, while F 2(X) is the complement 
of the diagonal in X x X. 

The main results of Fadell and Neuwirth [7] concern the case when X 
is a manifoldt. Then Fn(X) is also a manifold. Further, if Xis connected 
then Fn(X) is a fibre bundle (without structural group) over Fr(X) for r = 
1, 2, ... , n - 1. Some conditions are given for the existence of sections. 

The special case when X = Rk, the real k-plane, is of particular interest. 
Clearly F 2(Rk) can be identified with Rk x (Rfa - {O}) through the transfor­
mation 

(x1,x2) 1-+ (x1 +x2, x1 -x2)-

We note, for later use, that this transformation is Z /2 equivariant, where Z /2 
acts on F 2(Rk) by switching factors, acts on Rk trivially, and acts on Rk -

{ O} by the antipodal transformation. Recently Massey [15] has shown that 
F 3(Rk) is a fibre bundle over F 2(Rk) with structural group the orthogonal 
group O(k - 1). Moreover the bundle is trivial if and only if k = 1, 2, 4 or 8. 

*We are most grateful to Professor Cohen for sending us a copy of this article. 
fBy a manifold, in this paper, we mean a finite-dimensional, smooth manifold with­

out boundary, of constant dimension, which satisfies the Hausdorff and first countability 
conditions. 
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AnothercaseofspecialinterestiswhenX = sk-l, the(k-1)-sphere. Then 
F 2(sk-l) can be identified with the tangent bundle T(sk-l) C sk-l x Rk by 
projectingx2 from -x 1 onto the tangent plane {xi} x Rk atx 1. 

The term configuration space is also used in the literature for the space of 
unordered n-tuples, rather than the space of ordered n-tuples, but here we 
only use it in the latter sense. 

2. Fibrewise configuration spaces 

By a covering space, in this paper, we simply mean a fibre bundle with 
discrete fibre. Let B be a space and let E be a covering space of B, in this 
sense. If (j : B --+Eis a section of Ethe complement E' = E - (jB is also a 
covering space of B. We shall mainly be concerned with finite coverings, such 
asB x Qn (n = 1,2, ... ). 

Given a fibrewise space X over B the fibrewise mapping-space map B (E, X) 
is defined with the fibrewise compact open topology as in §9 of [12]. In this 
special case the topology can be described quite simply as follows. The fibre 
at the point b of Bis just the space map(Eb,Xb) of maps of the discrete set 
Eb into Xb. Now b admits a neighbourhood W over which Eis trivial. So for 
each point e E Eb there exists a section Se : W -+ Ew such that se(b) = e. The 
restriction mapw(Ew,Xw) ofmapB(E,X) to Wis topologized so·that each 
of the functions 

s;: mapw(Ew,Xw) -+Xw 

is continuous, where s; ¢ = ¢se(f3) whenever /3 E W and ¢ : E /3 -+ X/3. Then 
mapB(E,X) itself is topologized so that a subset is open if and only ifit meets 
each of the spaces mapw(Ew,Xw) in an open set. As shown in §9 of [12] the 
topology is independent of the choice of sections. 

Let X be a fibrewise Hausdorff, fibrewise space over B. For each finite cov­
ering space E of B the fibrewise configuration space Ff(~) is defined as the 
subspace embB(E,X) of the fibrewise mapping-space mapB(E,X) consisting 
of embeddings. Thus the fibre of Ff (X) at the point b of B is just the config­
uration space emb(Eb,Xb)· When E = B x Qn we may write FB(X) instead 
of Ff (X); most previous work on fibrewise configuration spaces is limited to 
this special case. 

As we shall soon see, the reduction formula 

(2.1) 

plays a useful role in the theory. In fact the fibrewise theory can be used to 
retrieve some of the original results in the ordinary theory. 

We have Fj(X) = X, of course, and Fj(X) is just the complement of the 
diagonal in X xB X. When Xis a k-plane bundle over B we can identify 
Fj(X) with the fibrewise product X x B (X - B), where B is embedded as the 
zero-section, using in each fibre the transformation mentioned in § 1. This 
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identification is Z/2 equivariant, the group acting on Fi(x) by switching 
factors, on X by the identity, and on X - B by the antipodal transformation. 

In most cases of interest Xis a fibre bundle over B. Note that Ff (X) is 
then also a fibre bundle over B. IfX isafinitecoveringspace ofB so is Ff (X). 

Suppose that X is a G-bundle over B with fibre A, where G is a topological 
group and A is a G-space. Then X may be identified with the mixed product 
P x a A, where P is the associated principal G-bundle. The configuration 
space Fn(A) is also a G-space, under the diagonal action, and the fibrewise 
configuration space F.a(X) may be identified with P xa Fn(A). 

3. Fibrewise manifolds 

Manifolds over a base have been considered by Atiyah and Singer [1]; we 
prefer the term fibrewise manifold. In [1] a fibrewise manifold X over a 
base space B is defined to be a fibre bundle with fibre a compact manifold 
A and structural group the group Diff (A) of self-diffeomorphisms of A. Up 
to a point we could work with this definition but it is unsatisfactory to be 
restricted to compact fibres. For non-compact fibres the Atiyah-Singer defi­
nition is inappropriate although it provides a guide as to how to proceed. 

Fibrewise manifolds form a category in which the morphisms are called 
fibrewise smooth maps. An example of a fibrewise manifold over B is the 
product B x A where A is a manifold in the ordinary sense. An example of a 
fibrewise smooth map is a fibrewise map 

0:BxA-+BxA', 

where A and A' are manifolds, such that the second projection 

·1r20 : B x A -+ A' 

defines, for each point b of B, a smooth map 1"lJ : A-+ A' for which deriva­
tives of all orders exist and vary continuously with b. These special cases are 
required for the general definitions, as follows. 

We say that a fibrewise space X over B is a fibrewise manifoul, if there is 
given a numerable open covering of B and for each member U of the covering 
a local trivialization 

<Pu : Xu -+ u x Au, 

where </Ju is fibrewise over U and Au is a smooth manifold, such that the 
transition functions are fibrewise smooth. Specific.ally, if U, V are members 
of the covering then the map 

(UnV) xAu-+ (UnV) xAv 

determined by ¢v o ¢u1 is fibrewise smooth. Note that the fibres are mani­
folds. If dimAu = k, independently of U, we say thatX is k-dimensional. 



86 M.C. CRABB AND I.M. JAMES 

For example a fibre bundle over B with structural group a Lie group G and 
fibre a smooth G-manifold is a fibrewise manifold over B. 

Returning to the general case let f : X ~ X' be a fibrewise map, where X 
and X' are fibrewise manifolds over B. We describe f as fibrewise smooth if 
when 

</Ju :Xu~ U xAu, </Ju, :Xf,, ~ U' xAu, 

are trivializations, as above, the map 

(Un U') X Au ~ (Un U') X Au, 

determined by </J'u, of o ¢u1 is fibrewise smooth. 
The definition of fibrewise manifold we have given does not ensure that 

open subsets of fibrewise manifolds are also fibrewise manifolds. However 
the definition of fibrewise smooth map can still be used in the case of such 
open subsets. 

Note that if X and X' are fibrewise manifolds over B then so is the fibrewise 
topological product X XBX'. To demonstrate this we combine the numerable 
covers for X and X' by taking intersections in the usual way. 

Let 1r : X -'-+ Y be a fibrewise smooth map of fibrewise manifolds over 
B. We say that X is a fibrewise smooth fibre bundle over Y if there exists 
an open cover of Y by subsets U over which there exists a smooth (over B) 
trivialization 

1r-1u~UxA. 

Here A is a smooth manifold and U x A is open in the fibrewise manifold 
Y x A over B. We prove 

PROPOSITION (3.1) Let 1r: X ~ Y be a fibrewise smooth map, where X and 
Y are fibrewise manifolds over B. Suppose that there exists a numerable open 
covering of B and for each member U of the covering local trivializations 

<p : Xu ~ u X Ai, 'Ip : Yu ~ u X Afr 

such that the map 

is of the form id x 1ru, where Ai is a smooth fibre bundle over Afr with pro­
jection 1ru. Then 1r is a numerable fibrewise smooth fibre bund'le. 

To see this, use a partition of unity for Afr for each U of the numerable 

family. This determines a partition of unity of U x Afr and hence of Yu for 
each U. In this way we obtain a partition of unity for Y itself from which it 
follows that X is a fibrewise smooth fibre bundle over Y, as asserted. 
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The term fibrewise smooth vector bund/,e is defined in a similar fashion. For 
our purposes the important example is the fibrewise tangent bundle TnX of 
a fibrewise manifold X, constructed as follows. As a fibrewise set 

the disjoint union of the tangent bundles to the manifolds~. We topologize 
TBX using the smooth local trivializations of X. Specifically, if U is a member 
of the open covering of B, over which X is locally trivial, and 

¢:Xu--+ U xA 

is the corresponding local trivialization, then TuXu receives the topology 
induced by 

Tep: TuXu--+ u X TA. 

Then the open sets ofTnX are the subsets which meet each of the TuXu in 
an open set. The local trivializations make TnX a fibrewise manifold over B. 
Moreover the projections 

U x TA-+ U xA 

and the numerable local trivializations of TA over A combine to provide a 
numerable family of local trivializations of TnX, as required to show that 
TnX is a numerable fibrewise smooth vector bundle over X. 

For example, let X be a sphere bundle over B. As in § 1 we can identify 
Fj(X) with TBX and then, using (2.1), identify F~+1(x) with Fx(TBX) for 
alln~l. 

4. Local trivializations 

Let X be a fibrewise manifold over B and let E be..,.a numerable finite cover­
ing space of B. The local trivializations U x A of X and U x Qn of E over an 
open set UCB determine a local trivialization U x Fn(A) of Ff (X), which 
thus becomes a fibrewise manifold. (We combine numerable covers by taking 
intersections in the usual way.) When E admits a section we prove 

PROPOSITION ( 4.1) Let E be a numerab/,e finite covering space of B and let X 
be a fibrewise manifold over B. Suppose that E has a section u. Then Fj(X) 
is a numerable fibrewise smooth bundle over X with projection u* induced by 
(J'. 

Locally u* is of the form id x 1r: U x Fn(A)--+ U x A, where Fn(A) is the 
s:mooth fibre bundle over A with projection 1r given by evaluation at u(bo) for 
some point b0 E U, as in [7]. So the proposition follows at once from (3.1) 
above. As an illustration of fibrewise techniques we extract the main step 
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in the argument in [7], Theorem 1, as a lemma which could well have other 
implications. 

LEMMA ( 4.2) Let B be a space and kt X be a fibre bundk over B with a mani­
fold as fibre. If X admits a section s then X ( with this section) is locally trivial 
as a fibrewise pointed space, so that X - sB is a fibre bundle over B. Moreover, 
if B is a manifold, X is a snwoth fibre bundk over B ands is a snwoth section, 
then the local trivializations may be taken to be smooth. 

In other words, under these conditions a bundle of spaces which admits 
a section is equivalent, as a fibrewise pointed space, to a bundle of pointed 
spaces. 

Clearly it is sufficient to deal with the case when X = B x A, for some 
manifold A, and the section is given by a map s : B --+ A. Fix bo E B and 
choose a coordinate chart U C A about ao = s(bo). Restrict attention to the 
neighbourhoods- 1U ofb 0 . The fibrewise pointed spaces- 1U xA overs- 1U 
is equivalent to the pull-back of the fibrewise pointed space U x A over U, 
using the diagonal section. It is sufficient to consider this special case. 

We shall construct, for each point b of U, a diffeomorphism 0b of A which 
is the identity outside U and is such that the self-map 

(b, a) 1--+ (b, 0b(a)) 

of U x A is a diffeomorphism. Furthermore 0b(ao) = s(b) for all bin a neigh­
bourhood V ofbo, so that the self-map transforms V xA with the axial section 
over V into V x A with the diagonal section. This will establish our result in 
the special case and hence in general. 

Without real loss of generality we may replace (U, bo) by the pair (Rk, {O} ), 
where k = dimA. Choose a C00 -bump function a : [O, oo) --+ R such that 
0 ::; a(t) ::; 1 for all t, while a(t) = 1 fort ::; 1 and a(t) = 0 fort 2: 4. For 
b E Rk consider the vector field vb given by 

vb(x) = a(llxll2)b. 

This has compact support, since vb(x) = 0 for llxll 2: 2 and vb(x) = b for 
llxll ::; 1. Take 0b I U to be eb(l), where eb is the flow determined by the 
vector field. This gives the required family of diffeomorphisms, with V the 
unit disc in Rk, thus proving the first assertion of the lemma. The remaining 
statements are easy observations. 

The deduction that Fn(A) is a smooth fibre bundle over A runs as follows. 
We have already noted that F 2(A) is the complement of the diagonal section 
in A x A, regarded as a fibrewise space over A using the first projection. By 
(4.2), therefore, F 2(A) is a smooth fibre bundle over A. Now we can use the 
reduction formula 

Fn(A) = F1-l(F2(A)) 

to see at once that Fn (A) is a fibre bundle over A. 
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Similar arguments show more generally that Fn(A) is a smooth fibre bun­
dle over Fr(A) for 1 ~ r < n. IndeedFr+ 1(A) as a fibrewise space over Fr(A) 
can be regarded as the complement of the union of the r canonical sections of 
the trivial bundle Fr(A) x A over Fr(A). Removingthe sections one by one 
we see from (4.2) that Fn+ 1(A) is a fibre bundle over Fr(A). Then 

Fn(A) - Fn-r (Fr+l(A)) 
- Fr(A) · 

is clearly a smooth fibre bundle over Fr(A). By applying (3.1) again we can 
generalize (4.1) to 

PROPOSITION ( 4.3) Let E1 and E2 be numerable finite covering spaces of B, 

and letX be a fibrewise manifold over B. Then F: 1uE 2 (X) is a numerable 

fibrewise smooth fibre bundle over-~ 1(X). 

5. Sections 

. Under certain conditions the fibrewise fibrations considered in §4 admit 
sections. In special cases ad hoc constructions can be used but for a gen~ral 
result we need to rely on the theory of fibrewise manifolds, particularly the 
following result. 

PROPOSITION (5.1) Let X be a fibrewise manifold over B. Then there exists 
a fibrewise smooth map 

e: TBX -+X XBX 

overX which sends the zero-section ofTBX into the diagonal of X XB X and 
i~ injective on each fibre over X. 

Here we regard X x B X as a fibrewise manifold over X using the second 
projection. When Bis a point, so that Xis just a manifold, the above result 
is standard and can be found in [14], for example. The map e is constructed 
as an appropriately scaled exponential map. An outline of the proof in the 
general ~e is given in an appendix to this paper. We use (5.1) to prove 

PROPOSITION (5.2) Let Ebe a numerable finite covering space of B with sec­
tion a- and let X be a fibrewise manifold over B with projection p. Suppose 

that the fibrewise configuration space Ff E (TBX) admits a section over X. 
Then Ff (X), regarded as a fibrewise space over X with projection a-*, admits 
a section. 

For a section of Ff E ( TBX) over X determines a fibrewise embedding of 
p*E in TBX over X. Without loss of generality we may assume that the pull­
back of a-corresponds to the zero-section of TBX. Composition with the map 
e in (5.1) gives the required section of Ff (X) over X. To be precise, for x E ~ 
let us denote by ix: Eb-+ (TBX)x the.embedding given by the section: thus 
ix( u(b)) = 0. Write ex : ( TBX)x -+ Xb for the restriction of e to fibres over 
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x. Then ex o ix: Eb ---t Xb is the required embedding in Ff (X)b- When Eis 
trivial this result simplifies to 

PROPOSITION (5.3) Let X be a fibrewise manifold over B. Suppose that the 
fibrewise tangent bundle TBX admits a nowhere-zero section over X. Then 
the fibrewise configuration space F13(X) admits a section over X for all n 2'.: 1. 

Indeed let v : X ---t TBX be the nowhere-zero vector field. Then a sec­
tion of Fx_(TBX) over Xis defined by sending each point x into then-tuple 
(u1, ... , Un), where ui = (i - l)v(x) E (TBX)x (i = 1, ... ,n). We deduce 

COROLLARY (5.4) Let X be a fibrewise manifold over B. Suppose that the 
pull-back TBX xB F13(X) of TBX to F13(X) admits a nowhere-zero section for 
some r 2'.: 1. Then F13(X) admits a section over F'Jf(X) for n 2'.: m 2'.: r. 

For the hypothesis implies that TF'Jl(X)FB+ 1 (X) admits a nowhere-zero 

section over F'Jf (X). Then (5.3), with B replaced by F'Jl(X) and X replaced 

by F1Jl'+ 1(x), shows that 

Fn-m (Fm+l(X)) - Fn(X) F'Jl(X) B - B 

has a section over F'Jf(X), as asserted. 
When B is a point we retrieve from (5.4) various results of Fadell and 

Neuwirth. For example we see that sections exist when Xis an open mani­
fold, also when X is a compact connected manifold with Euler characteristic 
zero. 

With general B the conclusion of (5.4) holds for affine bundles with r = 2, 
also for sphere-bundles with r = 3, using the identifications made at the end 
of §3. Of course direct geometric constructions can also be used. 

For example, let X be a sphere bundle over B, and let 

be defined by dropping the last point from each n-tuple, where n 2'.: 3. Given 
three distinct points Pl,P2,P3 in the same fibre Xb of X consider the line 
segment L joining pi to P2 in the associated affine bundle. If xis any point 
of L betweenp1 andp2 we can project x into Xb fromp3, thus ob~ning a 
point x' of Xb. If x is chosen sufficiently close top 1 the projection x' will be 
distinct from any previously given setp1, ... ,pn of distinct points of Xb. Thus 
a section of p is given by the transformation 

(p1,P2, ···,Pn) 1-+ (p1,P2, ... ,pn,x'). 

Full details are given by Fadell [6] in the case where B reduces to a point. 
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6. Trivializations 
Again we suppose that E is a finite covering space of B with section u. We 

also suppose that Xis a fibre bundle over B with sections. The projection 

u*: Ff(X) -+X 

is defined as before, and the fibrewise fibre p- 1(sB) is equivalent to the fibre­
wise configuration space Ff (X'), where E' = E - uB and X' = X - sB. 

When X is a vector bundle over B and s is the zero section it is easy to 
see that Ff (X) is equivalent, as a fibrewise pointed space, to the fibrewise 

topological product X XB Ff (X'). In fact a trivialization 

e: X XB Ff (X')-+ Ff (X) 

is given in each fibre by the formula e(x, u') = u, where x E Xb (b E B), 
u' : E£ -+ xb and u : Eb -+ xb are related by 

u(s(b)) = x - s(b), u(e') = x - u'(e'). 

The same conclusion may be reached in other cases. What follows is sug­
gested by the "elementary considerations" in the work of Cook and Crabb [3] 
on fibrewise Hopf structures, and by the discussion in Fadell and Neuwirth 
L7] of "suitability". 

By a Hopf structure on a pointed space A we mean a pointed map m : 
A x A -+ A, called the multiplication, which coincides with the folding map 
on the wedge product AV A. We describe the Hopf structure as special if each 
of the left translations is a homeomorphism. For example the classical Hopf 
structures on Sq, for q = 1, 3 or 7, are special in this sense. 

Now let A be a pointed G-space, where G is a topological group. Then 
A x A is a pointed G-space, with the diagonal action, and G-equivariant Hopf 
structures can be considered, as in [3]. 

For example, take the classical Hopf structure on Sq, for q = 1, 3 or 7. In 
the case of S 1 this is given by complex multiplication, which is 0(1) equiv­
ariant, in the case of S 3 by quaternionic multiplication, which is S0(3)­
equivariant, and in the case of S7 by Cayley multiplication, which is G2-
equivariant. 

Equivariant Hopf structures lead to fibrewise Hopf structures, as follows. 
Let B be a space and let X be a sectioned G-bundle over B with fibre the 
pointed G-space A. Suppose that A admits a G-equivariant Hopf structure 
m. Then m defines a fibrewise Hopf structure m' : X x B X -+ X on X. 
Moreover if m is special then m' is special in the sense that fibrewise left 
translation is a homeomorphism. This implies that the fibrewise configura­
tion space Ff (X) is trivial as a fibrewise fibre bundle over X with fibrewise 
fibre Ff (X'). Specifically a trivialization 

e: X XB Ff (X')-+ Ff (X) 
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is given in each fibre by the formula e(x, u') = u, where x E Xb (b E B), 
u' : E£ -+ Xfi and u : Eb -+ Xb are related by 

u(s(b)) = m'(x,s(b)), u(e') = m'(x,u'(e')). 

The conclusion holds in particular, for the fibrewise suspension of every 
(orthogonal) 0-sphere bundle, of every orientable 2-sphere bundle, and of 
every 6-sphere-bundle admitting a G2-structure. 

7. Sequences of :fibrewise fibrations 

As Fadell and Neuwirth show in [7], the homotopy theory of ordinary 
configuration spaces can be investigated through a sequence of fibrations. 
Specifically, if A is a connected manifold the fibrations are those associated 
with the successive configuration spaces Fn(A), Fn- 1(A - Q1), ... , and 
F 1(A-Qn-1), whereq1, ... , qn-1 are distinct points of A and Qr= {q1, ... ,qr}. 
By homogeneity, the spaces obtained by this procedure are independent of the 
choice of points to be deleted, up to diffeomorphism. 

When we turn to the fibrewise theory it is sections which are to be deleted 
and even in the simplest cases the result may depend on the choice of section. 
For example take B = sn and X = sn x sn, regarded as a fibrewise space 
using the first projection. The complement of the diagonal section is the 
tangent bundle to sn, while the complement of the second (axial) insertion 
is the trivial bundle. Except when sn is parallelizable, the complements of 
these sections are not equivalent in the sense of fibrewise homeomorphism. 
This can be seen as follows. If the tangent bundle is fibrewise homeomorphic 
to the trivial bundle then its fibrewise Alexandro ff compactification is trivial. 
From such a trivialization we readily obtain a Hopf structure on sn; hence 
n = 1, 3 or 7. 

So let X be a fibrewise manifold ov:er B, with connected fibres. Let s1, ... , 
sn-1 be mutually non-intersecting sections ofX, and write QrB = s1BU • · •U 
srB, for r = 1, ... ,n - 1. To investigate the fibrewise homotopy of F.a(X) we 
can proceed by inductive arguments through the sequence of fibrewise fibra­
tions associated with the successive fibrewise configuration spaces F.a(X), 
FB- 1(X - Q1B), ... ,Fl(X - Qn-1B). As we have seen in §5, these fibrations 
may admit sections under certain conditions. 

Alternatively we can proceed through the sequence of fibrewise fibrations 

where the successive fibres areX - Q1B, X - Q2B, ... ,X - Qn-1B. 
For example let X be a euclidean bundle of rank k, with associated sphere­

bundle S(X). We suppose that S(X) admits a sections from which we con­
struct the family of mutually non-intersecting sections s, 2s, 3s, ... , ns of X. 
Then Xis fibrewise contractible, X - Q1B has the same fibrewise homotopy 
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type as S(X), X-Q2B has the same fibrewise homotopy type as S(X)VBS(X), 
and so on. In such cases, therefore, calculation of the fibrewise homotopy 
groups of fibrewise configuration spaces is an accessible problem. 

8. Fibrewise embeddings 

For any (Hausdorff) space A we can think of the configuration space Fn (A) 
as the space emb(Qn,A) of embeddings u: Qn -+A, where 

Qn = {l, ... ,n} CR 

is discrete. Such an embedding u determines a Z/2-map 

where Z/2 acts by switching factors. Thus a map 

is defined. Taking A = Rk we prove 

PROPOSITION (8.1) For n 2: 1, the ,nap 

h: emb(Qn, Rk) -+ mapZf 2(F 2(Qn),F 2(Rk)) 

is (2k - 3)-connected. 

If we regard Qn as a 0-dimensional manifold this result may be regarded 
as a special case of the embedding theorem of Haefliger [8], but it is easily 
proved by induction on n, as follows. 

Observe that the oodomain of h oorresponds precisely to the space of maps 
of~n intoF 2(Rk), where Tn c F 2(Qn) is thesetofpairs of integers (i,j) such 
that 1 ~ i < j ~ n. In fact a Z/2-map of F 2( Qn) determines, by restriction, 
a map of Tn, and conversely. When n = 2, in particular, the cod.amain corre­
sponds to F 2(Rk), since Tn is just the pair (1,2), and his a homeomorphism. 

Now let n > 2 and suppose the result is true with n - 1 in place of n. 
Consider the commutative diagram shown below. 

h 
---+ 

l 

---+ mapZ/2(F2(Qn-1),F2(Rk)) 
h 

Here the left-hand vertical is the fibration of Fadell and Neuwirth, i.e. a 
special case of our (4.3), while the right-hand vertical is an example of the 
equivariant form of the Borsuk fibration, easily proved in this case. Con­
sider the fibre on the left over some (n- l)~tuple e1, .. ,,en-1 of distinct points 
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of Rk and the corresponding fibre on the right. The former is equivalent, up 
to homotopy type, to the wedge product of n-1 copies of sk-l while the latter 
is equivalent to the topological product. Moreover his similarly equivalent 
to the inclusion of the wedge product in the topological product, and so in­
duces an isomorphism of homotopy groups up to dimension 2k - 3. Since the 
lower h, in the diagram, is (2k - 3)-ronnected by the inductive hypothesis, so 
therefore is the upper h by the five lemma. Hence, by induction, we obtain 
(8.1). 

Returning to the fibrewise situation let E be a fibrewise space over B. By 
using the map h in each fibre we construct a fibrewise map 

Sections of the domain correspond precisely to fibrewise embeddings of E in 
X while sections of the codomain correspond precisely to fibrewise Z/2-maps 
of Fj(E) into Fj(X). Moreover if u : E -+ X is the fibrewise embedding 
corresponding to a sections of the domain then Fj(u) : Fj(E) --+ Fj(X) is 
the fibrewise Z/2-map corresponding to the section hB o s of the rodomain. 

In particular when Xis an affine bundle we can apply (3.2) of [11] and then 
using (8.1) obtain 

PROPOSITION (8.2) Let E be an n-fo/,d covering of a finite complex B, where 
n > 1, and let X be an affine bundle of rank k over B. Then the correspondence 
given by Fj between classes of fibrewise embeddings of E in X and fibrewise 
Z/2-maps of Fj(E) in Fj(X) is surjective when dimB < 2k-3, injective when 
dimB < 2k-4. 

. Here, of course, we classify fibrewise embeddings by fibrewise isotopy and 
fibrewise Z/2-maps by fibrewise Z/2-homotopy. 

Note that Fj(X) has the same fibrewise Z/2-homotopy type as the sphere­
bundle S(V), where Vis the vector bundle of translations associated with X 
and Z/2 acts antipodally on each fibre. Thus (8.2) shows that when dimB < 
2k - 3 there exists a fibrewise embedding of E in X if there exists a fibrewise 
Z/2-map of F](E) into S(V). 

There is a reformulation of the condition in the theorem which may be of 
interest. Write D for the orbit space of Fj(E) with respect to the action of 
Z/2 and write L for the line bundle over D associated with this double cover. 
Then fibrewise Z/2-maps ofFj(E) into S(V) correspond precisely to sections 
of S(L ® V) over D. (In particular if Eis a double cover of B then D reduces 
to Band it is easy to see directly, without any restriction on dimB, that there 
exists a fibrewise embedding of E in X if S(L ® V) admits a section.) 

As an application we deduce the result of Hansen [9] that if dimB < k 
there exists a fibrewise embedding of E in X. For dimensional reasons there 
is a section of S(L® V) over D and hence by (8.2), if k > 2, a section of Fj(X). 
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The special case k = 2 is elementary; indeed Fj(X) then has path-connected 
fibres and so admits a section if dim B ::; 1. 

Fibrewise embeddings of covering spaoos have been studied by Duvall, 
Hansen, Husch, Mf2Sller and Petersen; we cite only [ 4] and [9] in our ref­
erences since the overlap between our results and those in the previous lit­
erature seems rather minor. 

9. Appendix 

Let X be a fibrewise manifold over B. By a fibrewise smooth metric on 
X we mean, roughly, a family of smooth Riemannian metrics on the fibres 
Xb depending continuously on b (or, formally, a fibrewise smooth section of 
T"nX®Tjy( over X definingametriconeach fibre). Fibrewisesmooth metrics 
can be constructed by the following procedure. Let { U} be the numerable 
open covering of B and for each member U let 

</Ju :Xu-+ U xAu 

be the corresponding local trivialization defining the fibrewise smooth struc­
ture of X. The smooth manifold Au admits a smooth Riemannian metric gu, 
say, and this determines a fibrewise smooth metric </J'ugu on Xu. Choose a 
partition of unity {au} on B subordinated to {U}. By composing with the 
projection we obtain a partition of unity {/3u} on X subordinated to {Xu}. 
Then 

is a fibrewise smooth metric on X. 

PROPOSITION (9.1) Let X be a fibrewise manifold over B with fibrewise 
smooth metric. Then there exists a fibrewise smooth map 6 : X -+ (0, oo) 
such that the exponential map exp is defined and injective on the open disc 

in the tangent space TxXb for each x E.Xb C X. 

Here II Ilg denotes the norm on Tx~ defined by the fibrewise metricg. We 
regard X xB X as a fibrewise manifold over X using the second projection. 
By scaling we obtain (5.1). 

To prove (9.1) it is sufficient to find such a map 8u on each U x Au. For 
then we can take 

8 = E/3u</J'u6u, 

so that 8 (x) ::; max 8u ( </Ju (x)) for all x. Without real loss of generality, there­
fore, we can assume X is of the· form B x A, for some smooth manifold A. 
Using·a partition of unity on A, subordinate to a local covering by coordinate 
charts, we can reduce this to the case where A is an open disc in R k in a 
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similar manner. To be precise: we may assume g given on B x Rk and seek 
8' : B -+ (0, oo) so that the exponential map is defined and injective on the 
open disc 

{llvllg(b,x) < 6'(b)} 
for (b,x) EB x nk, our partition of unity having support in nk, the closure 
of the open disc. 

It is convenient to describe the situation in terms of the euclidean norm 
11 11 on R k rather than the norm on the tangent space given by g. Set 

.X(b) = min{llvllg(b,x): x E Jlt, v ER\ llvll = 1}. 

Since g is continuous and JJk is compact the function .X : B -+ (0, oo) is 
continuous. We assert that there exists a map 811 

: B-+ (0, oo) such that exp 
is defined and injective on the open disc 

{llvll < 6"(v)} 

for (b,x) EB x nk. Then we take 8'(b) = .X(b).8"(b) and the rest follows. 
We now have a purely local problem. Let r denote the connection form of 

a metricg on Rk. For eachy E Rk, fy is a bilinear map Rk x Rk-+ Rk. The 
equation of a geodesic , is 

i(t) + f-y(t)(i'(t),i'(t)) = 0, 

,(0) = x, i'(0) = v, _ 

and then ,(1) = expx(v). We claim that a constant 811 > 0 can be manu­
factured (continuously) from the coefficients of r and Dr on the closed disc 
{y E Rk : llYII s 2} such that 

(i) for x E nk, v E Rk, llvll < 6", expx(v) is defined and II e.xpx(v)II < 2; 

(ii) for x E Dk, v, w E Rk, llvll, llwll < 6", we have 

1 II expx(v) - expx(w) - (v - w)II S 211v - wll, 

and so expx(v) = expx(w) if and only if v = w. 

For example, we can take 

6" = /6 {1 + sup llfyll + sup IIDfyll}-l 
llYll~2 llYll~2 

Since 811 is given by sup norms of coefficients of r and Dr on a compact disc 
we obtain the map 6" as asserted. This completes the proof of (9.1) and hence 
(5.1). 
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