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NOT THE ADEM RELATIONS 
BY M.D. CROSSLEY AND J.R. HUBBUCK 

0. There are well known connections between the Chem character or 
Adams operators in complex K-theory and the Cyclic Reduced Powers in co-
homology. In particular under suitable hypotheses, the commuting of the 
Adams operators leads to Adem relations. In this note we derive these Adem 
relations explicitly for p = 2. 

1. Let IF2{so,s1, ... ,Bi, ... } be the free, graded, associative algebra over W2 
on generators si of degree i where so is the unit. We define qn by qo = s0 
and, for n > 0, Esiqn-i = 0 summing from Oto n. We write Pn,N for 
E(nt)sn+iqN-n-i for integers n > 0 and N n + l + v2(n!) where the 
summation is from i = 0 to i = N - n. Let I be the two sided ideal generated 
by all suchPn,N andA(2) = IF2{so,s1, ... ,si, ... }/I. 

There exists a surjective graded ring homomorphism h : A(2) -+ A(2), 
with image the mod 2 Steenrod algebra, where h(si) = Sqi. It is not an iso-
morphism; for example, the lowest degree in which h has a non-trivial kernel 
is 5 and it is generated by s4s1 + s1s4 + s2s1s2. However A(2) shares some 
properties in common with A(2). As an algebra, A(2) is generated by s0 and 
s2i, i 0. A derivation is defined by setting d(si) = si-1· Also A(2) has a 
Hopf algebra structure for which h is a Hopf algebra homomorphism. These 
matters will be discussed in section 2. We illustrate the use of A(2) by deriv-
ing some periodic relations in the Steenrod algebra. 

THEOREM (1.1). Let n and N be positive int;egers with n< 2t+ 1 and N 
2t+2 - t - 2. Then · 

Sqnx(SqN-n) + Sqn+zt+l x(SqN-n-2t+l) + ... 
·nt+l N ·nt+l +sqn+i.;.,.· x(Sq -n-i.;.,.· ) + ... = o 

COROLLARY (1.2). Let N 2t+2 - t - 2. Then 

N nt+l N nt+l · nt+l N · nt+l x(Sq ) + Sq;.'." x(Sq -;.,.· ) + ... + Sql.G x(Sq -i.c ) + ... = 0 

These results are not new, see [2],[3],[7], although the methods of proof 
are completely different. For example, if we adopt temporarily the notation 
of Theorem 2 of [3] by setting N = 'lf1' - k with k :S n in Corollary (1.2), 
we obtain x(Sq.21l_;_k) = Sq.2'l-I x(Sq.2'l- 1-k) which by iteration gives the first 
part of that theorem. In fact, this follows from a weaker result than Corollary 
(1.2) which leads also to the last part of Theorem 2 of [3]; we will return to 
this in section 4. 

One can set up an iterative procedure from Corollary (1.2) to express 
x(SqN) in terms ofproductsofSqi. LetN1 = m+2t+l andN 2 = m+2t+2t+l 
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where m < 2t. Then 

N 2t 2t 2t+l x(Sq 1) = Sq x(Sqm+ ) + Sq x(Sqm) 

x(SqN2) = {Sq2tsq2t + Sq~+l}x(Sqm+~) 
+{Sq~ Sq~+l + Sqa.2t }x(Sqm) 

Setting m = 0 in N 1 and reading backwards gives, 

2t+l 2t 2t+l Sq + Sq x(Sq ) + x(Sq ) = 0 

The existence ofA(2) was knownin the 1960's but was defined in a differ-
ent manner which is described in the next section. For a short period at that 
time, the second author thought thatA(2) might be isomorphic to the Steen-
rod algebra, but lost interest in it when he proved that this was false. The 
question was discussed with Frank Adams in the 1960's and his thoughts 
have been influential on what follows; in particular he derived the relations 
Pn N for n = 1,2, and 3 in a slightly different manner. We are grateful to Wil-
so:ii Sutherland for reading the manuscript. 

2. Let A = 71.,{ s0 , S 1, ... , si, ... } be the graded, free, associative ring on 
generators si of degree i where s0 = 1 E Ao. We define Qn in A by Q0 = 1 
and, for n > 0, I: sn-iQi = 0, summing from i = 0 to n. 

A definition of A(2) is implicit in [4], based on properties of Adams op-
erators in complex K-theory. It is shown there that if X is a CW-complex 
of finite type without homology 2-torsion, then A acts as an algebra of op-
erators on ffiH 2i(X,Zc2)) with Sq : H2i(X,Zc2))-+ H2i+2q(X,Zc2)) a ho-
momorphism. Here 71.,(2) denotes the integers localised at 2 and the action 
is not canonical. If H*(X, IF2) is identified with H*(X, 71.,(2)) ® IF2, then Sq 
mod 2 becomes Sq2q. Further, for each x E H 2i(X,Zc2)) and any odd in-
teger k, (knsn + kn-lsn- 1Q1 + ... + ~)x is divisible by 2n in the 
free Zc2)-module H2i+2n(X, 71.,(2)), that is, knsn + kn-lsn-lQl + ... + Qn = 
0 mod 2n (as an operator acting on EB H2i(X, 7/.,(2))). We consider all rela-
tions mod 2 implied by this last equation as k varies. (For example, when 
n = 2, k2S2 + kS 1Q1 + Q2 = 0 mod 4. As S2 + S 1Q1 + Q2 = 0, 
this gives ~k2 - l)S 2 + (k - l)S 1Q 1 = 0 mod 4, and setting k = 3 shows 
that 2S1Q = 0 mod 4 or S1Q1 = 0 mod 2). These mod 2 relations imply 
relations among the Sq2i and x(Sq2i). (When n = 2, S 1Q 1 = 0 mod 2 gives 
Sq2x(Sq 2) = 0). But any relations which hold among the Sq2i acting on 
the cohomology of spaces without homology 2-torsion imply relations on the 
IF2-cohomology of any space by mapping Sq2i to Sqi, that is, Adem relations. 

We formalise the above as follows. Let B = Q{ s0 , S 1, ... , si, ... } be the 
graded, . free, associative algebra over the rationals Q on the si used to de-
fine A. Then A is a subring of B. In B, let 



NOT THE ADEM RELATIONS 101 

rn,k = 2-n{knsn + kn-lsn-lQl + ... + Qn} 

for each integer n > 0 and odd integer k. Set r0 ,k = 1 and rn,k = 0 for n < 0. 
We define C to be the smallest subring of B which contains A and all the 
elements rn,k, or equivalently, C is the subring of B generated by Si, i 0, 
and r n,k, n l, 1 < k < 2n. There is an embedding of graded rings A -+ C 
and, in each degree, both are free, finitely generated Abelian groups. So there 
is an induced homomorphism i : A® JF2 --+- C ® JF2. We define A(2) to be the 
image of i. 

Let the images of sn and qt under the composition A --+-A® JF2 -+ C © 
JF2 be Sn and qn. To prove that this definition of A(2) coincides with that 
given in section 1, we must show that the mod 2 relations implied by knsn + 
kn-lsn- 1Q1 + ... + = 0 mod 2n, ask varies over odd integers, are precisely 
the relations Pn,N = 0 for n l,N n + 1 + 112(n!). This we establish in 
section 3 and from it follows immediately that h : A(2) --+- A(2) of section 1 
is a surjective homomorphism of graded rings. It will be proved in section 4 
that A(2) is generated by so and s2i, i 0. 

A connected, associative, coassociative, strictly co-commutative Hopf al-
gebra structure is determined on B by requiring that its comultiplication '¢ 
satisfies 1/J(Sn) = r:,sn-i ® si. One checks that this implies that 'f/;(rn,k) = 
L ri,k ® rn-i,k· Mapping si to Qi gives an anti-automorphism of this Hopf 
algebra. In addition, B has a derivation determined by d(Si) = si-l (and 

· · 1 (k21) therefore d(Qi) = -Qi- ). One must check that d(rn,k) = rn-1,k· 
The corresponding formulae for 'f/;( sn) and d ( sn) define corresponding 

structures on A, and therefore, on A(2). Thus A(2) is a connected, graded, 
associative, coassociative, cocommutative Hopf algebra over JF2 with an anti-
automorphism x defined by x(si) = qi and a derivation d defined by d(si) = 
Si-1· 

Finally in this section, we comment on the missing Adem relations inA(2). 
It is shown in [8] that to define A(2) from JF2{Sq0 , Sq 1, ... , Sqi, ... } it is suffi-
cient to express each Sqn for n -:p in terms of the Sq~ and to be able 
to write Sq 2i Sq_2i and Sq~ Sqai + Sqai Sq~ for j i + 2 in terms of Sq2't for 
k < i. It is the third set ofrelations which is absent fromA(2). 

3. We need to examine the system of equations, 

~SN +kN-lsN-lQl + ... + = 0mod cjN 

where k is an odd integer and 1 < k < 2N, or equivalently, 

(1) S 1~-1(k - 1) + S 2~- 2(k2 - 1) + ... + sN (~ - 1) = 0 mod~' 

as explained in the section above. 
First we recall Newton's interpolation formula. 
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LEMMA (3.3). Let f(x) = anx11' + an-lxn-l + ... + ao. Then 

n!an =f(n)- (1)f(n -1) + ... + (-li('t)f(n-i) + ... + (-ltf(O) 

We apply Lemma (3.3) to fm(x) = (2.x + 1r - 1. Let 

Cn,m = fm(n) - ('i)fm(n - 1) + ... + (-ltfm(O) 

Then Cn,m = 0 if n > m and Cn,n = n!2n, setting n = m. Let Pn denote 
equation (1) with k = 2n + 1. So 

Pn - (i)Pn-1 + ··· + (-l)ti)Pn-i + ··· + (-lt- 1(n~1)P1 

becomes 

(2) S nnN-n + sn+lnN-n-1 + Cn,n Cn n+l ~· ··· 
+ S, n+inN-n-i + + sN - 0 d 2N Cnn+i ~· ... CnN = mo , , 

for 1 ::; n < 2N-1, and the systems of equations (1) and (2) are equivalent. 
We require a more tractable formula for the coefficients Cn,m• 

LEMMA (3.4). As formal power series in t, 

Cn,n · 
(1 - t)(l - 3t) ... (l - (2n + l)t) = L.... cn,n+iti 

The proof of Lemma (3.4) is a routine exercise in expressing the left hand 
side as a sum of partial fractions. 

COROLLARY (3.5). Cn,n divides Cn,m. 

It follows from Corollary (3.5) that the equations (2) are identically zero 
for N < 1 + n + v2(n!) as v2(cn,n) = n + v2(n!). Let dn,m = Cn,m/cn,n• The 
non-trivial relations in (2) are equivalent to 

sn {jV-n + dn,n+ 1 sn+ l(jV-n-1 + ... + dn,NSN = 0 mod cp-n-v2(n!) 

Thus the mod 2 relations following from (1) are 

sn(jV-n + dn,n+lsn+l(jV-n-1 + ... + dn,NSN = 0 mod 2 

forN~ l+n+v2(n!). 
From Lemma (3.4), it follows that dn,n+i mod 2 equals the coefficient mod 

2 of ti in (1- t)-(n+l) which is (nti). Thus we have established that inA(2) 
of section 2, the relations among the si and qi are 

Pn,N = "z)nti)Bn+iqN-n-i = 0 
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for N l + n + v2(n!) which gives the definition of the introduction. 

4. We consider the system of equations 

8nQN-n + (nt 1)8n+IQN-n-I + ··· + (nt) 8n+iQN-n-i + ··· = 0, 
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where N l + n + v2(n!), but, exrept when we are describing phenomena 
exclusively relating toA(2),we will write Sqi for si and x(Sqi) for Qi• 

An array of coefficients for small values of n and N is given in Table 1. For 
example, row seven means that, 

Sq7x(SqN-7) + Sq15x(SqN-15) + ... + Sq7+8ix(SqN-7-.8i) + ... = O 

forN 12. 
In computations which follow, we will use without further comment the 

well known formulae:-
Let the binary expansions of n and r be E ai2i and E bi2i respectively. 

Then 

We return to considering the theorem of Don Davis mentioned in the in-
troduction. We consider row 2n-I - 1 with N 2n - n. Then 

(3) 

for 1 k n - I and 

(4) 

These follow as (2ns-I+s) = 0 mod 2 for 1 < s < 2n-I - 1 and 
(fn=~) = 1 mod 2. 

It follows that Sq'lfl- 1-kx(Sq'lfl- 1
) Sq2n-k, or equivalently 

x(Sq'lfl-k) = Sq_21l-l x(Sq'lfl- 1-k), for 1 k n. We argue by induction; the 
case k I is included in (4). Applying the derivation d to 

2n-1 k 2n-I on k Sq - x(Sq ) = Sq"'___ fork< n gives 

Sq_21l-l -k- I x-(sq'lfl-1) + Sq_21l-1 -k x(Sq_21l-1_ 1) = Sq.21l-k- 1. 

But 
Sq2n-l_kx(Sq_21l-l-1) = x(Sq2n-l_1x(Sq_21l-l-k)) = 0 

by (3), and so we have the required result. 
Ifwe differentiate x(Sq'lfl-n) = Sq2n-l x(Sq'lfl- 1-n), we obtain 

x(Sq'lfl-n-I) = Sq2n-l_1x(Sq'lfl-l-n) + Sq2n-\(Sq'lfl-l-n-l) 
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and replacing n by n - 1 and substituting for x(Sq2"'- 1-n) this gives, 

x(Sq2n-n-l) = Sq2"'-l-1sq2"'-2-lx(Sq2"'-2-n+l) 
+Sq2n-l_ lsq2"'-2 x(Sq2"'-2-n) + Sq2"'-1 x(Sq2"'-1-n-1) 

But in A(2), Sq2k- 1Sqk = 0, k > 0, and so the second term, on the right 
hand side vanishes. Iteration leads to the formula, 

x(Sq2"'-n-1) = Sq2"'-l- lsq2"'-2- 1 .. .Sq3Sql + Sq2"'-1 x(Sq2n-l_n-l) 

This is the final part of theorem 2 of [3]. 
However in A(2), s2k-lsk -f= 0 in general. (For otherwise A(2) would be 

isomorphic to A(2).) For example, s 1s1 = 0, s3s2 = 0, but s5s3 -f: 0. We do 
not know if s2t_ 1s2t-1 = 0 for all t > 0. 

It is a routine matter to check that A(2) is generated as an algebra by s0 
and s2i,i 2:: 0. For, let k have binary expansion 2u + au+12u+l + ... + 2v with 
u < v. Then from row 2u of Table 1, one has 

as (k~ 2u) = 1 mod 2. The result then follows by induction on k. 
There exists a surjective, degree-halving, homomorphism of algebrasA(2) / 

(s1) -+ A(2) defined by mapping s2i to Bi and s2i+l to zero. But unlike the 
situation for A(2), it is not an isomorphism; it is surjective but not injective. 
The key reason why it is not an isomorphism is that 2M 2:: 2n + 1 + v2(2n!) 
implies that M 2:: n + 1 + v2(n!) but is not equivalent to it. 

We now prove Theorem (1.1) by applying row operations to the general 
case of Table 1. We consider the 2r - 1 rows from row 2r to 2r+ 1 - 1 where 
N 2:: 2r+2 - r - 2. Working from column zero, the entries in each row 2r + s 
where O s 2r- l are periodic with period 2r+ 1 as 

( 'lf +s+t) = ('lf +s+t+k2r+l) mod 2 -(2r + s) < t < 2r - s 
t - t+k2r+l ' -

((f) with t < 0 is zero, but the formula remains true.) 
The first 2r entries of each such row are zero and it follows that we can 

perform row reductions, so that each row becomes 

The resulting array of coefficients is given in Table 2. 
Now let N > 2t+2 - t - 2 and consider row 2r + s where r < t and O < s < 

2r- l _ The ~nd non-zero element in this row occurs in column 2r+ 1 + 27° +;, 
So ifwe add row 2r+l + 2r + s, with period 2r+2, to row 2r + s, with period 
2r+ 1, the new row has period 2r+2 . Indeed, letting Pi denote the i-th row, 
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P2r +s + P2r+1+ 2r +s + P2r+2+ 2r +s + ... + P2t+2r +s has period _2t+l. Thus by row 
reduction, for N 2t+2 -t-2, we can form an equivalent system of equations 
for n < 2t+l of period 2t+l. This proves Theorem (1.1). 

Corollary (1.2) follows immediately by differentiating 

Sq1x(SqN) + Sq1+'lf+1 x(SqN-'lf+1) + ... 
1 · nt+ 1 N · 2t+l +Sq +z.~ x(Sq -l. ) + ... = 0 

and again applying Theorem (1.1), withN + 1 replaced by N 
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